We report experimental test-beam results on dielectric-loaded waveguide detectors that utilize microwave Cherenkov signals to time and characterize high energy particle showers. These results are used to validate models and produce high-fidelity simulations of timing plane systems which yield picosecond time tags and millimeter spatial coordinates for the shower centroid. These timing planes, based on the Askaryan effect in solid dielectrics, are most effective at the high center-of-momentum energies planned for the Future Circular Collider (FCC-hh), and are of particular interest in the forward region due to their high radiation immunity. We use our beam test results and GEANT4 simulations to validate a hybrid microwave detector model, which is used to simulate a reference timing plane design for the FCC forward calorimeters. Our results indicate that 0.5-3 ps particle timing is possible for a wide range of collision products in the reference FCC hadron collider detector, even with current technology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.