The National Ignition Facility (NIF) is the world's largest laser system. It contains a 192 beam neodymium glass laser that is designed to deliver 1.8 MJ at 500 TW at 351 nm in order to achieve energy gain (ignition) in a deuterium-tritium nuclear fusion target. To meet this goal, laser design criteria include the ability to generate pulses of up to 1.8 MJ total energy, with peak power of 500 TW and temporal pulse shapes spanning 2 orders of magnitude at the third harmonic (351 nm or 3omega) of the laser wavelength. The focal-spot fluence distribution of these pulses is carefully controlled, through a combination of special optics in the 1omega (1053 nm) portion of the laser (continuous phase plates), smoothing by spectral dispersion, and the overlapping of multiple beams with orthogonal polarization (polarization smoothing). We report performance qualification tests of the first eight beams of the NIF laser. Measurements are reported at both 1omega and 3omega, both with and without focal-spot conditioning. When scaled to full 192 beam operation, these results demonstrate, to the best of our knowledge for the first time, that the NIF will meet its laser performance design criteria, and that the NIF can simultaneously meet the temporal pulse shaping, focal-spot conditioning, and peak power requirements for two candidate indirect drive ignition designs.
Indirect-drive hohlraum experiments at the National Ignition Facility have demonstrated symmetric capsule implosions at unprecedented laser drive energies of 0.7 MJ. 192 simultaneously fired laser beams heat ignition emulate hohlraums to radiation temperatures of 3.3 million Kelvin compressing 1.8-millimeter capsules by the soft x rays produced by the hohlraum. Self-generated plasma-optics gratings on either end of the hohlraum tune the laser power distribution in the hohlraum producing symmetric x-ray drive as inferred from the shape of the capsule self-emission. These experiments indicate conditions suitable for compressing deuterium-tritium filled capsules with the goal to achieve burning fusion plasmas and energy gain in the laboratory.With completion (1) and commissioning (2) of the National Ignition Facility (NIF) the quest for producing a burning fusion plasma has begun (3, 4). The goal of these experiments is to compress matter to densities and temperatures higher than the interior of the sun (5-7) which will initiate nuclear fusion and burn of hydrogen isotopes (8-10). This technique holds promise to demonstrate a highly efficient carbon-free process that will burn milligram quantities of nuclear fuel on each laser shot for producing energy gain in the laboratory.The NIF (11) consists of 192 laser beams that have been arranged into cones of beams to irradiate a target from the top and bottom hemispheres. This "indirect-drive" laser geometry has been chosen for the first experiments to heat the interior of centimeter-scale cylindrical gold hohlraums (8,(12)(13)(14)(15) through laser entrance holes (LEH) on the top and bottom end of the cylinder (Fig. 1). Hohlraums act as radiation enclosures that convert the optical laser light into soft x-rays that are characterized by the radiation temperature T RAD . Present ignition designs operate at temperatures of 270 to 305 eV or 3.1 to 3.5 million K. The radiation field compresses a spherical fusion capsule mounted in the center of the hohlraum by x-ray ablation of the outer shell. The ablation process compresses the cryogenically prepared solid deuterium-tritium fuel layer in a spherical rocket implosion. In the final stages, the fuel reaches densities 1000-times solid and the central hot spot temperatures will approach 100 million K to initiate the nuclear burn process.We have symmetrically imploded 1.8-mm diameter fusion capsules in cryogenically fielded centimeter-scale hohlraums at 20 K. These experiments show efficient hohlraum heating to radiation temperatures of 3.3 million K. In addition, the large scale-length plasmas encountered in these experiments have allowed us to use self-generated plasma optics gratings (16) to control the radiation symmetry (17) and to achieve symmetric fusion capsule implosions.Figure 2 A shows the laser power at the frequency-tripled wavelength of 351 nm versus time for two different pulse shapes. These 11-ns and 16-ns long pulses heat 8.4-mm long, 4.6-mm diameter hohlraums with 20% helium, 80% hydrogen (atomic) mixtures and ...
Facility: ushering in a new age for high energy density science," Phys. This paper summarizes the status of NIF hohlraum energetics experiments. The hohlraum targets and experimental design are described, as well as the results of the initial experiments. The data demonstrate low backscattered energy (< 10%) for hohlraums filled with helium gas. A discussion of our current understanding of NIF hohlraum x-ray drive follows, including an overview of the computational tools, i.e., radiation-hydrodynamics codes, that have been used to design the hohlraums. The performance of the codes is compared to x-ray drive and capsule implosion data from the first NIF experiments. These results bode well for future NIF ignition hohlraum experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.