BackgroundPancreatic adenocarcinomas (PAs) have very poor prognoses even when surgery is possible. Currently, there are no tissular biomarkers to predict long-term survival in patients with PA. The aims of this study were to (1) describe the metabolome of pancreatic parenchyma (PP) and PA, (2) determine the impact of neoadjuvant chemotherapy on PP and PA, and (3) find tissue metabolic biomarkers associated with long-term survivors, using metabolomics analysis.Methods 1H high-resolution magic angle spinning (HRMAS) nuclear magnetic resonance (NMR) spectroscopy using intact tissues was applied to analyze metabolites in PP tissue samples (n = 17) and intact tumor samples (n = 106), obtained from 106 patients undergoing surgical resection for PA.ResultsAn orthogonal partial least square-discriminant analysis (OPLS-DA) showed a clear distinction between PP and PA. Higher concentrations of myo-inositol and glycerol were shown in PP, whereas higher levels of glucose, ascorbate, ethanolamine, lactate, and taurine were revealed in PA. Among those metabolites, one of them was particularly obvious in the distinction between long-term and short-term survivors. A high ethanolamine level was associated with worse survival. The impact of neoadjuvant chemotherapy was higher on PA than on PP.ConclusionsThis study shows that HRMAS NMR spectroscopy using intact tissue provides important and solid information in the characterization of PA. Metabolomics profiling can also predict long-term survival: the assessment of ethanolamine concentration can be clinically relevant as a single metabolic biomarker. This information can be obtained in 20 min, during surgery, to distinguish long-term from short-term survival.Electronic supplementary materialThe online version of this article (doi:10.1186/s12916-017-0810-z) contains supplementary material, which is available to authorized users.
Purpose Infection and malignancy represent two common complications after solid organ transplantation, which are often characterized by poorly specific clinical symptomatology. Herein, we have evaluated the role of 18 F-fluoro-2-deoxy-Dglucose (FDG) positron emission tomography/computed tomography (PET/CT) in this clinical setting. Methods Fifty-eight consecutive patients who underwent FDG PET/CT after kidney, lung or heart transplantation were included in this retrospective analysis. Twelve patients underwent FDG PET/CT to strengthen or confirm a diagnostic suspicion of malignancies. The remaining 46 patients presented with unexplained inflammatory syndrome, fever of unknown origin (FUO), CMV or EBV seroconversion during post-transplant follow-up without conclusive conventional imaging. FDG PET/CT results were compared to histology or to the finding obtained during a clinical/imaging follow-up period of at least 6 months after PET/CT study. Results Positive FDG PET/CT results were obtained in 18 (31 %) patients. In the remaining 40 (69 %) cases, FDG PET/CT was negative, showing exclusively a physiological radiotracer distribution. On the basis of a patient-based analysis, FDG PET/CT's sensitivity, specificity, PPV and NPV were respectively 78 %, 90 %, 78 % and 90 %, with a global accuracy of 86 %. FDG PET/CT was true positive in 14 patients with bacterial pneumonias (n = 4), pulmonary fungal infection (n = 1), histoplasmosis (n = 1), cutaneous abscess (n = 1), inflammatory disorder (sacroiliitis) (n = 1), lymphoma (n = 3) and NSCLC (n = 3). On the other hand, FDG PET/CT failed to detect lung bronchoalveolar adenocarcinoma, septicemia, endocarditis and graft-versus-host disease (GVHD), respectively, in four patients. FDG PET/CT contributed to adjusting the patient therapeutic strategy in 40 % of cases. Conclusions FDG PET/CT emerges as a valuable technique to manage complications in the post-transplantation period. FDG PET/CT should be considered in patients with severe unexplained inflammatory syndrome or FUO and inconclusive conventional imaging or to discriminate active from silent lesions previously detected by conventional imaging particularly when malignancy is suspected.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.