Cation-selective P2X receptor channels were first described in sensory neurons where they are important for primary afferent neurotransmission and nociception. Here we report the cloning of a complementary DNA (P2X3) from rat dorsal root ganglia that had properties dissimilar to those of sensory neurons. We also found RNA for (P2X1)(ref. 7), (P2X2)(ref. 8) and P2X4 (ref. 9) in sensory neurons; channels expressed from individual cDNAs did not reproduce those of sensory ganglia. Coexpression of P2X3 with P2X2, but not other combinations, yielded ATP-activated currents that closely resembled those in sensory neurons. These properties could not be accounted for by addition of the two sets of channels, indicating that a new channel had formed by subunit heteropolymerization. Although in some tissues responses to ATP can be accounted for by homomeric channels, our results indicate that ATP-gated channels of sensory neurons may form by a specific heteropolymerization of P2X receptor subunits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.