Aluminide diffusion coatings were oxidized in air under atmospheric pressure under isothermal and cyclic conditions. The high-temperature efficiency of the pack-aluminized alloys was tested by comparing their oxidation behavior in the temperature range 800-1080°C. The k p values deduced from the parabolic plots of weight-gain curves showed that a-Al 2 O 3 composed the major phase of the oxide scale on samples oxidized at T > 1000°C. For lower temperatures, transient-alumina phases were observed. The aluminide materials also exhibited excellent resistance to cyclic oxidation at 1000°C. The second aim of this study was to dope the aluminide compounds obtained by a pack-cementation process with yttria, which was introduced by metal-organic chemical-vapor deposition (MOCVD). The beneficial effect of the reactive-element-oxide coating is strongly dependent on its mode of introduction, since the oxidation resistance is drastically increased when the Y 2 O 3 coating was applied prior to the aluminization process. When applied after the aluminization, the reactive element gave negative effects on the high-temperature oxidation behavior of the iron aluminides. The oxide morphologies, X-ray diffraction patterns and two-stage experiments helped to understand the oxide-scale-growth mechanisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.