Replication-based nanofabrication techniques offer rapid, cost effective ways to produce nanostructured devices for a host of applications in engineering, biological research and beyond. In this work we developed a method to replicate ultra high aspect ratio (UHAR) nanopillars by injection molding with failure rates lower than one pillar in a thousand. We provide a review of the literature in which replication of difficult micro- and nanostructures is facilitated through the use of different tooling materials and surface coatings, before describing the non-adhesive surface coatings which we used to translate a previously developed technique from low to high aspect ratios. This development involved a systematic study of nine different surface coatings on polymer tooling initially patterned by nanoimprint lithography. Using this method we were able to produce injection moulded pillar-like nanostructures with aspect ratios of up to 20:1, more than 6 times that reported elsewhere in the literature for this type of feature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.