Chronic kidney disease–mineral bone disorder (CKD‐MBD) is defined by abnormalities in mineral and hormone metabolism, bone histomorphometric changes, and/or the presence of soft‐tissue calcification. Emerging evidence suggests that features of CKD‐MBD may occur early in disease progression and are associated with changes in osteocyte function. To identify early changes in bone, we utilized the jck mouse, a genetic model of polycystic kidney disease that exhibits progressive renal disease. At 6 weeks of age, jck mice have normal renal function and no evidence of bone disease but exhibit continual decline in renal function and death by 20 weeks of age, when approximately 40% to 60% of them have vascular calcification. Temporal changes in serum parameters were identified in jck relative to wild‐type mice from 6 through 18 weeks of age and were subsequently shown to largely mirror serum changes commonly associated with clinical CKD‐MBD. Bone histomorphometry revealed progressive changes associated with increased osteoclast activity and elevated bone formation relative to wild‐type mice. To capture the early molecular and cellular events in the progression of CKD‐MBD we examined cell‐specific pathways associated with bone remodeling at the protein and/or gene expression level. Importantly, a steady increase in the number of cells expressing phosphor‐Ser33/37‐β‐catenin was observed both in mouse and human bones. Overall repression of Wnt/β‐catenin signaling within osteocytes occurred in conjunction with increased expression of Wnt antagonists (SOST and sFRP4) and genes associated with osteoclast activity, including receptor activator of NF‐κB ligand (RANKL). The resulting increase in the RANKL/osteoprotegerin (OPG) ratio correlated with increased osteoclast activity. In late‐stage disease, an apparent repression of genes associated with osteoblast function was observed. These data confirm that jck mice develop progressive biochemical changes in CKD‐MBD and suggest that repression of the Wnt/β‐catenin pathway is involved in the pathogenesis of renal osteodystrophy. © 2012 American Society for Bone and Mineral Research.
The incidence of cardiovascular events and mortality strongly correlates with serum phosphate in individuals with CKD. The Npt2b transporter contributes to maintaining phosphate homeostasis in the setting of normal renal function, but its role in CKD-associated hyperphosphatemia is not well understood. Here, we used adenine to induce uremia in both Npt2b-deficient and wild-type mice. Compared with wild-type uremic mice, Npt2b-deficient uremic mice had significantly lower levels of serum phosphate and attenuation of FGF23. Treating Npt2b-deficient mice with the phosphate binder sevelamer carbonate further reduced serum phosphate levels. Uremic mice exhibited high turnover renal osteodystrophy; treatment with sevelamer significantly decreased the number of osteoclasts and the rate of mineral apposition in Npt2b-deficient mice, but sevelamer did not affect bone formation and rate of mineral apposition in wild-type mice. Taken together, these data suggest that targeting Npt2b in addition to using dietary phosphorus binders may be a therapeutic approach to modulate serum phosphate in CKD.
Alterations to the structure of the glomerular filtration barrier lead to effacement of podocyte foot processes, leakage of albumin, and the development of proteinuria. To better understand the signaling pathways involved in the response of the glomerular filtration barrier to injury, we studied freshly isolated rat glomeruli, which allows for the monitoring and pharmacologic manipulation of early signaling events. Administration of protamine sulfate rapidly damaged the isolated glomeruli, resulting in foot process effacement and albumin leakage. Inhibition of calcium channels and chelation of extracellular calcium reduced protamine sulfateinduced damage, suggesting that calcium signaling plays a critical role in the initial stages of glomerular injury. Calcineurin inhibitors (FK506 and cyclosporine A) and the cathepsin L inhibitor E64 all inhibited protamine sulfate-mediated barrier changes, which suggests that calcium signaling acts, in part, through calcineurin-and cathepsin L-dependent cleavage of synaptopodin, a regulator of actin dynamics. The mTOR inhibitor rapamycin also protected glomeruli, demonstrating that calcium signaling has additional calcineurinindependent components. Furthermore, activation of Akt through mTOR had a direct role on glomerular barrier integrity, and activation of calcium channels mediated this process, likely independent of phosphoinositide 3-kinase. Taken together, these results demonstrate the importance of calcium and related signaling pathways in the structure and function of the glomerular filtration barrier.
The weaning to estrus and weaning to ovulation intervals in sows are controlled by ovarian follicular growth after weaning. Longer intervals could be caused by smaller diameter follicles at weaning that take more time to reach a preovulatory size. We addressed this hypothesis by decreasing the diameter of follicular populations before weaning and then measuring follicular development and interval to estrus and ovulation after weaning. The posterior vena cava, cranial to the entry of the ovarian vein, was cathetered for blood sampling and infusion in 20 sows at 12 +/- 1 d after farrowing. Sows were assigned randomly to receive either 30 mL of charcoal-treated follicular fluid (FF, n = 9; a treatment known to decrease serum FSH and follicular diameter) or 30 mL of saline (n = 11) by venous infusion thrice daily (0700, 1500, and 2300 h) for 96 h beginning at 14 +/- 1 d after farrowing. Sows were weaned 48 h after the last infusion. Blood samples were collected for FSH analysis thrice daily beginning on the day of catheterization and continuing until ovulation. Follicular diameter was determined once daily by transrectal ultrasonography. A treatment x time interaction was detected for serum FSH (P < 0.001) and follicular diameter (P < 0.001) because serum FSH and the diameter of follicular populations decreased in FF sows during the infusion period. After the infusion period, serum FSH rebounded in FF sows, and follicles resumed growth but grew at the same rate as those of saline-treated sows, thus failing to achieve equivalent diameters relative to saline-treated sows on a given day after weaning. As a result, sows treated with FF had longer (P < 0.05) weaning to estrus (6.1 +/- 0.4 d) and weaning to ovulation (8.6 +/- 0.5 d) intervals compared with saline-treated sows (4.7 +/- 0.4 d and 7.2 +/- 0.4 d, respectively). We conclude that the diameter of the follicular population at weaning is one factor that controls interval to estrus and ovulation in sows. Small follicles at weaning cannot undergo compensatory growth and require additional time to reach a preovulatory size.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.