We present cosmological results from a combined analysis of galaxy clustering and weak gravitational lensing, using 1321 deg 2 of griz imaging data from the first year of the Dark Energy Survey (DES Y1). We combine three two-point functions: (i) the cosmic shear correlation function of 26 million source galaxies in four redshift bins, (ii) the galaxy angular autocorrelation function of 650,000 luminous red galaxies in five redshift bins, and (iii) the galaxy-shear cross-correlation of luminous red galaxy positions and source galaxy shears. To demonstrate the robustness of these results, we use independent pairs of galaxy shape, photometric redshift estimation and validation, and likelihood analysis pipelines. To prevent confirmation bias, the bulk of the analysis was carried out while "blind" to the true results; we describe an extensive suite of systematics checks performed and passed during this blinded phase. The data are modeled in flat ΛCDM and wCDM cosmologies, marginalizing over 20 nuisance parameters, varying 6 (for ΛCDM) or 7 (for wCDM) cosmological parameters including the neutrino mass density and including the 457 × 457 element analytic covariance matrix. We find consistent cosmological results from these three two-point functions, and from their combination obtain S8 ≡ σ8(Ωm/0.3) 0.5 = 0.773 +0.026 −0.020 and Ωm = 0.267 +0.030 −0.017 for ΛCDM; for wCDM, we find S8 = 0.782 +0.036 −0.024 , Ωm = 0.284 +0.033 −0.030 , and w = −0.82 +0.
We present cosmological results from a combined analysis of galaxy clustering and weak gravitational lensing, using 1321 deg 2 of griz imaging data from the first year of the Dark Energy Survey (DES Y1). We combine three two-point functions: (i) the cosmic shear correlation function of 26 million source galaxies in four redshift bins, (ii) the galaxy angular autocorrelation function of 650,000 luminous red galaxies in five redshift bins, and (iii) the galaxy-shear cross-correlation of luminous red galaxy positions and source galaxy shears. To demonstrate the robustness of these results, we use independent pairs of galaxy shape, photometric-redshift estimation and validation, and likelihood analysis pipelines. To prevent confirmation bias, the bulk of the analysis was carried out while "blind" to the true results; we describe an extensive suite of systematics checks performed and passed during this blinded phase. The data are modeled in flat ΛCDM and wCDM cosmologies, marginalizing over 20 nuisance parameters, varying 6 (for ΛCDM) or 7 (for wCDM) cosmological parameters including the neutrino mass density and including the 457 × 457 element analytic covariance matrix. We find consistent cosmological results from these three two-point functions and from their combination obtain S 8 ≡ σ 8 ðΩ m =0.3Þ 0.5 ¼ 0.773 þ0.026 −0.020 and Ω m ¼ 0.267 þ0.030 −0.017 for ΛCDM; for wCDM, we find S 8 ¼ 0.782 þ0.036 −0.024 , Ω m ¼ 0.284 þ0.033 −0.030 , and w ¼ −0.82 þ0.21 −0.20 at 68% C.L. The precision of these DES Y1 constraints rivals that from the Planck cosmic microwave background measurements, allowing a comparison of structure in the very early and late Universe on equal terms. Although the DES Y1 best-fit values for S 8 and Ω m are lower than the central values from Planck for both ΛCDM and wCDM, the Bayes factor indicates that the DES Y1 and Planck data sets are consistent with each other in the context of ΛCDM. Combining DES Y1 with Planck, baryonic acoustic oscillation measurements from SDSS, 6dF, and BOSS and type Ia supernovae from the Joint Lightcurve Analysis data set, we derive very tight constraints on cosmological parameters: S 8 ¼ 0.802 AE 0.012 and Ω m ¼ 0.298 AE 0.007 in ΛCDM and w ¼ −1.00 þ0.05 −0.04 in wCDM. Upcoming Dark Energy Survey analyses will provide more stringent tests of the ΛCDM model and extensions such as a time-varying equation of state of dark energy or modified gravity.
We present the Dark Energy Camera (DECam) discovery of the optical counterpart of the first binary neutron star merger detected through gravitational-wave emission, GW170817. Our observations commenced 10.5 hr post-merger, as soon as the localization region became accessible from Chile. We imaged 70 deg 2 in the i and z bands, covering 93% of the initial integrated localization probability, to a depth necessary to identify likely optical counterparts (e.g., a kilonova). At 11.4 hr post-merger we detected a bright optical transient located , in the luminosity range expected for a kilonova. We identified 1500 potential transient candidates. Applying simple selection criteria aimed at rejecting background events such as supernovae, we find the transient associated with NGC 4993 as the only remaining plausible counterpart, and reject chance coincidence at the 99.5% confidence level. We therefore conclude that the optical counterpart we have identified near NGC 4993 is associated with GW170817. This discovery ushers in the era of multi-messenger astronomy with gravitational waves and demonstrates the power of DECam to identify the optical counterparts of gravitationalwave sources.
We study the evolution of the number density, as a function of the size, of passive early-type galaxies with a wide range of stellar masses (10 10 M ⊙ < M * 10 11.5 M ⊙ ) from z ∼ 3 to z ∼ 1, exploiting the unique dataset available in the GOODS-South field, including the recently obtained WFC3 images as a part of the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS). In particular, we select a sample of ∼107 massive (M * > 10 10 M ⊙ ), passive (SSF R < 10 −2 Gyr −1 ) and morphologically spheroidal galaxies at 1.2 < z < 3, taking advantage of the panchromatic dataset available for GOODS, including VLT, CFHT, Spitzer, Chandra and HST ACS+WFC3 data. We find that at 1 < z < 3 the passively evolving early-type galaxies are the reddest and most massive objects in the Universe, and we prove that a correlation between mass, morphology, color and star-formation activity is already in place at that epoch. We measure a significant evolution in the mass-size relation of passive early-type galaxies (ETGs) from z ∼ 3 to z ∼ 1, with galaxies growing on average by a factor of 2 in size in a 3 Gyr timescale only. We witness also an increase in the number density of passive ETGs of 50 times over the same time interval. We find that the first ETGs to form at z 2 are all compact or ultra-compact, while normal sized ETGs (meaning ETGs with sizes comparable to those of local counterparts of the same mass) are the most common ETGs only at z < 1. The increase of the average size of ETGs at 0 < z < 1 is primarily driven by the appearance of new large ETGs rather than by the size increase of individual galaxies.
We describe data release 3 (DR3) of the Galaxy And Mass Assembly (GAMA) survey. The GAMA survey is a spectroscopic redshift and multi-wavelength photometric survey in three equatorial regions each of 60.0 deg 2 (G09, G12, G15), and two southern regions of 55.7 deg 2 (G02) and 50.6 deg 2 (G23). DR3 consists of: the first release of data covering the G02 region and of data on H-ATLAS sources in the equatorial regions; and updates to data on sources released in DR2. DR3 includes 154 809 sources with secure redshifts across four regions. A subset of the G02 region is 95.5% redshift complete to r < 19.8 mag over an area of 19.5 deg 2 , with 20 086 galaxy redshifts, that overlaps substantially with the XXL survey (Xray) and VIPERS (redshift survey). In the equatorial regions, the main survey has even higher completeness (98.5%), and spectra for about 75% of H-ATLAS filler targets were also obtained. This filler sample extends spectroscopic redshifts, for probable optical counterparts to H-ATLAS sub-mm sources, to 0.8 mag deeper (r < 20.6 mag) than the GAMA main survey. There are 25 814 galaxy redshifts for H-ATLAS sources from the GAMA main or filler surveys. GAMA DR3 is available at the survey website (www.gama-survey.org/dr3/).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.