SummaryMacrophage colony-stimulating factor (M-C3F) is known to play an important role in osteoclast formation. However, its actions on mature cells have not been fully characterized. We now report that M-CSF dramatically stimulates osteoclastic motility and spreading; osteoclasts responded to a gradient of M-CSF with orientation, and random cell polarization occurred after isotropic exposure. M-CSF also supported the survival of osteoclasts by preventing apoptosis. Paradoxically, M-CSF inhibits bone resorption by isolated osteoclasts. We found that this was effected predominantly by reduction in the number of excavations. Thus, M-CSF showed a propensity to suppress resorption through a reduction in the proportion of cells that were resorbing bone. Our data suggest that apart from the established role of M-CSF in the provision of precursors for osteoclastic induction, a major role for M-CSF in bone resorption is to enhance osteoclastic survival, migration, and chemotaxis. It seems appropriate that during these processes resorptive functions should be suppressed. We suggest that M-CSF continues to modulate osteoclastic activity once osteoclasts are on resorptive sites, through regulation of the balance between resorption and migration, such that not only the quantity, but the spatial pattern of resorption can be controlled by adjacent M-CSF-secreting cells of osteoblastic lineage.
We recently found that estrogen deficiency leads to a lowering of thiol antioxidant defenses in rodent bone. Moreover, administration of agents that increase the concentration in bone of glutathione, the main intracellular antioxidant, prevented estrogen-deficiency bone loss, whereas depletion of glutathione by buthionine sulfoximine administration provoked substantial bone loss. To analyze further the mechanism by which antioxidant defenses modulate bone loss, we have now compared expression of the known antioxidant enzymes in osteoclasts. We found that glutathione peroxidase 1 (Gpx), the enzyme primarily responsible for the intracellular degradation of hydrogen peroxide, is overwhelmingly the predominant antioxidant enzyme expressed by osteoclasts and that its expression was increased in bone marrow macrophages by receptor activator of nuclear factor-kappaB ligand (RANKL) and in osteoclasts by 17beta-estradiol. We therefore tested the effect of overexpression of Gpx in osteoclasts by stable transfection of RAW 264.7 (RAW) cells, which are capable of osteoclastic differentiation in response to RANKL, with a Gpx-expression construct. Osteoclast formation was abolished. The Gpx expression construct also suppressed RANKL-induced nuclear factor-kappaB activation and increased resistance to oxidation of dihydrodichlorofluorescein by exogenous hydrogen peroxide. We therefore tested the role of hydrogen peroxide in the loss of bone caused by estrogen deficiency by administering pegylated catalase to mice. We found that catalase prevented ovariectomy-induced bone loss. These results suggest that hydrogen peroxide is the reactive oxygen species responsible for signaling the bone loss of estrogen deficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.