Solid source molecular beam epitaxy is used to explore the growth of carbon films directly on Si(111). It is shown that graphitic carbon is grown by the implementation of a thin amorphous carbon film that suppresses the formation of SiC precipitates. Raman scattering measurements show the D and G vibrational phonon modes, indicating graphitic ordering in the carbon film. X-ray photoelectron spectroscopy is used to verify the formation of sp2 bonds in the graphitic carbon films and confirms the suppression of SiC.
Fabrication of coplanar waveguide resonators with internal quality factors near 106 remains challenging. Here, high-purity superconductors are implemented through metamorphic epitaxial aluminum that is grown via molecular beam epitaxy on silicon and sapphire substrates. X-ray diffraction and scanning transmission electron microscopy indicate an abrupt highly ordered interface that results in crystal relaxation within a few monolayers of the substrate interface and no measurable interfacial contamination. Quarter-wave coplanar waveguide resonators are fabricated using optical lithography and measured at temperatures below 100 mK. Post measurement characterization with charge contrast imaging in a scanning electron microscope identifies processing artifacts at the waveguide sidewalls, on the exposed substrate area and on the exposed aluminum surface. Of primary importance are processing induced corrosion defects on aluminum sidewalls, nanoparticle contamination, and photoresist residue that is difficult to remove without affecting the superconductor material. Likely correlations between these artifacts and the measured quality factor are discussed in context of device to device variations in resonator performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.