A rotational band with seven gamma-ray transitions between states with spin 2 Planck's constant and 16 Planck's constant has been observed in the doubly magic, self-conjugate nucleus (40)(20)Ca(20). The measured transition quadrupole moment of 1.80(+0.39)(-0.29)eb indicates a superdeformed shape with a deformation beta(2) = 0.59(+0.11)(-0.07). The features of this band are explained by cranked relativistic mean field calculations to arise from an 8-particle 8-hole excitation.
The fragment mass analyzer at the ATLAS facility has been used to unambiguously identify the mass number associated with different decay modes of the nobelium isotopes produced via 204 Pb(48 Ca, xn) 252−x No reactions. Isotopically pure (>99.7%) 204 Pb targets were used to reduce background from more favored reactions on heavier lead isotopes. Two spontaneous fission half-lives (t 1/2 = 3.7 +1.1 −0.8 and 43 +22 −15 µs) were deduced from a total of 158 fission events. Both decays originate from 250 No rather than from neighboring isotopes as previously suggested. The longer activity most likely corresponds to a K isomer in this nucleus. No conclusive evidence for an α branch was observed, resulting in upper limits of 2.1% for the shorter lifetime and 3.4% for the longer activity.
A gamma-ray spectroscopic measurement of the N = Z nucleus 68Se has been made following the 12C(58Ni,2n) reaction at 185 and 220 MeV using Gammasphere and the Argonne Fragment Mass Analyzer. Despite a very low production cross section of 200(50) &mgr;b, two distinct rotational bands were found; the ground state band consistent with oblate collective rotation, and an excited band consistent with prolate rotation. These observations support long-standing predictions that nuclear ground states with substantial oblate (beta(2) approximately -0.3) deformation should exist in this region.
Excited states in 138Ce have been studied via the 12C(138Ce, 138Ce*) Coulomb excitation reaction at 480 MeV. Relative cross sections have been determined from the gamma-ray yields observed with Gammasphere. The E2 and M1 strength distributions between the lowest six 2+ states up to 2.7 MeV enables us to identify the 2(4)+ state in 138Ce as the dominant fragment of the one-phonon 2(1,ms)+ mixed-symmetry state. Mixing between this level and a nearby isoscalar state is observed and is more than 4 times larger than in the neighboring isotone 136Ba. This is direct evidence that the stability of mixed-symmetry states strongly depends on the underlying subshell structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.