Due to reservoir conditions in the Apika-Nenke field, it was decided to carry out a hydraulic fracturing pilot project with the aim of maximizing production in the field. To achieve the objective, cores, image logs, pressure points, and sonic dipole logs were obtained to have the greatest amount of information available during the analysis and thus stimulate the reservoir to obtain the maximum potential. After the analysis of the laminated reservoirs, it was required to implement a technique that generates higher fracture conductivity to reduce the drawdown during production and improve the connection through the laminations. The successful implementation of channel fracturing led to this technique becoming the preferred completion method in the field for wells requiring stimulation. Three hydraulic fracturing treatments were performed in Apaika-Nenke field: one in 2015 and two in 2022. With continuous improvement in the perforating and fracturing technique, all jobs demonstrated outstanding production results. The implementation of hydraulic fracturing permits the production of this reservoir, which was considered a secondary target due to the low production results without fracturing.
We discuss the application of overflushing along with pillar fracturing in a mature oilfield in Ecuador, where an effective high conductivity (high proppant concentration) fracture is required to enhance productivity because of low reservoir pressure and high permeability. Hydraulic fracturing is a proven technology used in the Oriente Basin with three challenges that remain constant (1) maximize conductivity and (2) reduce proppant flowback risk in the production stage and (3) reduce well intervention time. To address these challenges a combination of overflushed pillar fracturing, and tip screen out (TSO) are proposed. We show the reservoir analysis, laboratory tests and hydraulic fracture modeling performed to support the implementation of overflushing. Reservoir analysis includes a methodology used to execute an optimized fracture design, and laboratory tests include core flow tests that define non-damaging fluids to be used during workover and fracturing operations, and relative permeability modifiers (RPM) for water conformance. Relevant results are also presented using three key performance indicators (KPI) to evaluate the effectiveness of resin-based pillar fracturing with overflushing viz., (1) pressure buildup data (2) fluid production and (3) productivity index increase post fracturing. Three case studies are presented for fracturing candidates with special conditions, that show that this technique can be extended beyond the traditional job. Pillar fracturing (fracture and refracturing jobs) combined with overflushing in conventional reservoirs is documented for the first time, with effective stimulation results. This study applies overflushing, a practice developed for completion efficiency in unconventional reservoirs, and combines it with already proven practices in mature conventional reservoirs (pillar fracturing, customized fluids, 3D fracture design, and water conformance while fracturing) with a positive effect on production enhancement and proppant flowback risk reduction. Pressure buildup tests confirm no adverse effect of overflushing since negative skin or bilinear flow is observed, along with an increase in fluid production and productivity index in the studied wells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.