First described in 1843, Rumen protozoa with their striking appearance were assumed to be important for the welfare of their host. However, despite contributing up to 50% of the bio-mass in the rumen, the role of protozoa in rumen microbial ecosystem remains unclear. Phylogenetic analysis of 18S rDNA libraries generated from the rumen of cattle, sheep, and goats has revealed an unexpected diversity of ciliated protozoa although variation in gene copy number between species makes it difficult to obtain absolute quantification. Despite repeated attempts it has proven impossible to maintain rumen protozoa in axenic culture. Thus it has been difficult to establish conclusively a role of ciliate protozoa in rumen fiber degradation. The development of techniques to clone and express ciliate genes in λ phage, together with bioinformatic indices to confirm the ciliate origin of the genes has allowed the isolation and characterization of fibrolytic genes from rumen protozoa. Elimination of the ciliate protozoa increases microbial protein supply by up to 30% and reduces methane production by up to 11%. Our recent findings suggest that holotrich protozoa play a disproportionate role in supporting methanogenesis whilst the small Entodinium are responsible for much of the bacterial protein turnover. As yet no method to control protozoa in the rumen that is safe and practically applicable has been developed, however a range of plant extract capable of controlling if not completely eliminating rumen protozoa have been described.
Ruminant production is under increased public scrutiny in terms of the importance of cattle and other ruminants as major producers of the greenhouse gas methane. Methanogenesis is performed by methanogenic archaea, a specialised group of microbes present in several anaerobic environments including the rumen. In the rumen, methanogens utilise predominantly H 2 and CO 2 as substrates to produce methane, filling an important functional niche in the ecosystem. However, in addition to methanogens, other microbes also have an influence on methane production either because they are involved in hydrogen (H 2 ) metabolism or because they affect the numbers of methanogens or other members of the microbiota. This study explores the relationship between some of these microbes and methanogenesis and highlights some functional groups that could play a role in decreasing methane emissions. Dihydrogen ('H 2 ' from this point on) is the key element that drives methane production in the rumen. Among H 2 producers, protozoa have a prominent position, which is strengthened by their close physical association with methanogens, which favours H 2 transfer from one to the other. A strong positive interaction was found between protozoal numbers and methane emissions, and because this group is possibly not essential for rumen function, protozoa might be a target for methane mitigation. An important function that is associated with production of H 2 is the degradation of fibrous plant material. However, not all members of the rumen fibrolytic community produce H 2 . Increasing the proportion of non-H 2 producing fibrolytic microorganisms might decrease methane production without affecting forage degradability. Alternative pathways that use electron acceptors other than CO 2 to oxidise H 2 also exist in the rumen. Bacteria with this type of metabolism normally occupy a distinct ecological niche and are not dominant members of the microbiota; however, their numbers can increase if the right potential electron acceptor is present in the diet. Nitrate is an alternative electron sinks that can promote the growth of particular bacteria able to compete with methanogens. Because of the toxicity of the intermediate product, nitrite, the use of nitrate has not been fully explored, but in adapted animals, nitrite does not accumulate and nitrate supplementation may be an alternative under some dietary conditions that deserves to be further studied. In conclusion, methanogens in the rumen co-exist with other microbes, which have contrasting activities. A better understanding of these populations and the pathways that compete with methanogenesis may provide novel targets for emissions abatement in ruminant production.
IMPF: 00.81 RONO: 00Methane production in ruminants has received global attention in relation to its contribution to the greenhouse gas effect and global warming. In the last two decades, research programs in Europe, Oceania and North America have explored a variety of approaches to redirecting reducing equivalents towards other reductive substrates as a means of decreasing methane production in ruminants. Some approaches such as vaccination, biocontrols (bacteriophage, bacteriocins) and chemical inhibitors directly target methanogens. Other approaches, such as defaunation, diet manipulations including various plant extracts or organic acids, and promotion of acetogenic populations, seek to lower the supply of metabolic hydrogen to methanogens. The microbial ecology of the rumen ecosystem is exceedingly complex and the ability of this system to efficiently convert complex carbohydrates to fermentable sugars is in part due to the effective disposal of H2 through reduction of CO2 to methane by methanogens. Although methane production can be inhibited for short periods, the ecology of the system is such that it frequently reverts back to initial levels of methane production though a variety of adaptive mechanisms. Hydrogen flow in the rumen can be modelled stoichiometrically, but accounting for H2 by direct measurement of reduced substrates often does not concur with the predictions of stoichiometric models. Clearly, substantial gaps remain in our knowledge of the intricacies of hydrogen flow within the ruminal ecosystem. Further characterisation of the fundamental microbial biochemistry of hydrogen generation and methane production in the rumen may provide insight for development of effective strategies for reducing methane emissions from ruminants.Peer reviewe
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.