In guinea-pig ileum, ageing has been associated with a decrease in enteric neurons. This study examined guinea-pig colon and measured changes in gut dimensions, neuron size, density and ganglionic area. Changes in motor nerve fibres in the circular muscle were also measured. Myenteric neurons in whole-mount preparations of mid-colon from 2-week, 6-month, and 2-year-old guinea-pigs were labelled immunohistochemically with the neuronal marker human neuronal protein HuC/HuD, and numbers of neurons mm(-2), neuronal size, ganglionic area mm(-2), gut length, circumference and muscle thickness were measured. Corrected numbers of neurons mm(-2) and ganglionic area mm(-2) accounting for growth of the colon were calculated. Additionally, nerve fibres in circular muscle cross-sections were labelled with antibodies against nitric oxide synthase (NOS) and substance P (SP) and the density of nerve fibres in circular muscle was measured. The numbers of neurons mm(-2) decreased by 56% (from 2 weeks to 2 years) with no change in neuron size. Total neuron numbers decreased by 19% (P = 0.14) when adjusted for changes in length and circumference with age. The percentage area of NOS- and SP-immunoreactive (IR) nerve fibres in the circular muscle decreased (P< 0.001), but the total area of NOS and SP-IR nerve fibres increased (P < 0.01) due to an age-related increase in muscle thickness. The density of myenteric neurons in guinea-pig mid-colon halved from 2 weeks to 2 years, but when the increase in colon dimensions was considered, the number of neurons decreased by only 19%. The percentage area of motor nerve fibres in the circular muscle decreased with no change in total volume of nerve fibres.
In the human colon, subtypes of MRs were present on multiple cell types within the enteric circuits underlying motility, secretory and vasoactive reflexes. The cellular distribution for MRs found in this study agrees with data from functional studies, providing insight into the role MRs have in mediating enteric cholinergic neurotransmission.
There are age-related reductions in nerve fiber density in human colon circular muscle. NOS and VIP do not show regional variations, while SP nerve fiber density is higher in distal colon. 1/3 of pediatric STC patients have low SP or VIP nerve fiber density in proximal colon.
In human sigmoid colon circular muscle, there are reductions in nNOS-, VIP- and SP-IR nerve fibre density with growth from newborn to late adolescence but little further change with aging. The reduction in nerve density is due to an increase in circular muscle thickness rather than a loss of nerve fibres.
Cholinergic nerves are identified by labelling molecules in the ACh synthesis, release and destruction pathway. Recently, antibodies against another molecule in this pathway have been developed. Choline reuptake at the synapse occurs via the high-affinity choline transporter (CHT1). CHT1 immunoreactivity is present in cholinergic nerve fibres containing vesicular acetylcholine transporter (VAChT) in the human and rat central nervous system and rat enteric nervous system. We have examined whether CHT1 immunoreactivity is present in nerve fibres in human intestine and whether it is colocalised with markers of cholinergic, tachykinergic or nitrergic circuitry. Human ileum and colon were fixed, sectioned and processed for fluorescence immunohistochemistry with antibodies against CHT1, class III beta-tubulin (TUJ1), synaptophysin, common choline acetyl-transferase (cChAT), VAChT, nitric oxide synthase (NOS), substance P (SP) and vasoactive intestinal peptide (VIP). CHT1 immunoreactivity was present in many nerve fibres in the circular and longitudinal muscle, myenteric and submucosal ganglia, submucosa and mucosa in human colon and ileum and colocalised with immunoreactivity for TUJ1 and synaptophysin confirming its presence in nerve fibres. In nerve fibres in myenteric ganglia and muscle, CHT1 immunoreactivity colocalised with immunoreactivity for VAChT and cChAT. Some colocalisation occurred with SP immunoreactivity, but little with immunoreactivity for VIP or NOS. In the mucosa, CHT1 immunoreactivity colocalised with that for VIP and SP in nerve fibres and was also present in vascular nerve fibres in the submucosa and on epithelial cells on the luminal border of crypts. The colocalisation of CHT1 immunoreactivity with VAChT immunoreactivity in cholinergic enteric nerves in the human bowel thus suggests that CHT1 represents another marker of cholinergic nerves.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.