BackgroundDue to the rapidly expanding body of biomedical literature, biologists require increasingly sophisticated and efficient systems to help them to search for relevant information. Such systems should account for the multiple written variants used to represent biomedical concepts, and allow the user to search for specific pieces of knowledge (or events) involving these concepts, e.g., protein-protein interactions. Such functionality requires access to detailed information about words used in the biomedical literature. Existing databases and ontologies often have a specific focus and are oriented towards human use. Consequently, biological knowledge is dispersed amongst many resources, which often do not attempt to account for the large and frequently changing set of variants that appear in the literature. Additionally, such resources typically do not provide information about how terms relate to each other in texts to describe events.ResultsThis article provides an overview of the design, construction and evaluation of a large-scale lexical and conceptual resource for the biomedical domain, the BioLexicon. The resource can be exploited by text mining tools at several levels, e.g., part-of-speech tagging, recognition of biomedical entities, and the extraction of events in which they are involved. As such, the BioLexicon must account for real usage of words in biomedical texts. In particular, the BioLexicon gathers together different types of terms from several existing data resources into a single, unified repository, and augments them with new term variants automatically extracted from biomedical literature. Extraction of events is facilitated through the inclusion of biologically pertinent verbs (around which events are typically organized) together with information about typical patterns of grammatical and semantic behaviour, which are acquired from domain-specific texts. In order to foster interoperability, the BioLexicon is modelled using the Lexical Markup Framework, an ISO standard.ConclusionsThe BioLexicon contains over 2.2 M lexical entries and over 1.8 M terminological variants, as well as over 3.3 M semantic relations, including over 2 M synonymy relations. Its exploitation can benefit both application developers and users. We demonstrate some such benefits by describing integration of the resource into a number of different tools, and evaluating improvements in performance that this can bring.
UK PubMed Central (UKPMC) is a full-text article database that extends the functionality of the original PubMed Central (PMC) repository. The UKPMC project was launched as the first ‘mirror’ site to PMC, which in analogy to the International Nucleotide Sequence Database Collaboration, aims to provide international preservation of the open and free-access biomedical literature. UKPMC (http://ukpmc.ac.uk) has undergone considerable development since its inception in 2007 and now includes both a UKPMC and PubMed search, as well as access to other records such as Agricola, Patents and recent biomedical theses. UKPMC also differs from PubMed/PMC in that the full text and abstract information can be searched in an integrated manner from one input box. Furthermore, UKPMC contains ‘Cited By’ information as an alternative way to navigate the literature and has incorporated text-mining approaches to semantically enrich content and integrate it with related database resources. Finally, UKPMC also offers added-value services (UKPMC+) that enable grantees to deposit manuscripts, link papers to grants, publish online portfolios and view citation information on their papers. Here we describe UKPMC and clarify the relationship between PMC and UKPMC, providing historical context and future directions, 10 years on from when PMC was first launched.
We describe a novel method for coping with ungrammatical input based on the use of chart-like data structures, which permit anytime processing. Priority is given to deep syntactic analysis. Should this fail, the best partial analyses are selected, according to a shortest-paths algorithm, and assembled in a robust processing phase. The method has been applied in a speech translation project with large HPSG grammars.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.