Hardness values as well as yield and tensile strength values were compiled for over 150 nonaustenitic, hypoeutectoid steels having a wide range of compositions and a variety of microstructures. The microstructures include ferrite, pearlite, martensite, bainite, and complex multiphase structures. The yield strength of the steels ranged from approximately 300 MPa to over 1700 MPa. Tensile strength varied over the range of 450-2350 MPa. Regression analysis was used to determine the correlation of the yield strength and the tensile strength to the diamond pyramid hardness values for these steels. Both the yield strength and tensile strength of the steels exhibited a linear correlation with the hardness over the entire range of strength values. Empirical relationships are provided that enable the estimation of strength from a bulk hardness measurement. A weak effect of strain-hardening potential on the hardness-yield strength relationship was also observed.
The effect of strain rate on stress-strain behavior of austenitic stainless steel 309 and 304L was investigated. Tensile tests were conducted at room temperature at strain rates ranging from 1.25 ϫ 10 Ϫ4 s Ϫ1 to 400 s Ϫ1 . The evolution of volume fraction martensite that formed during plastic deformation was measured with X-ray diffraction and characterized with light microscopy. Alloy 304L was found to transform readily with strain, with martensite nucleating on slip bands and at slip band intersections. Alloy 309 did not exhibit strain-induced transformation. Variations in ductility and strength with strain rate are explained in terms of the competition between hardening, from the martensitic transformation and a positive strain rate sensitivity, and softening due to deformational heating. Existing models used to predict the increase in volume fraction martensite with strain were examined and modified to fit the experimental data of this study as well as recent data for alloys 304 and 301LN obtained from the literature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.