<div>Abstract<p>We recently identified a polyamide-chlorambucil conjugate, 1R-Chl, which alkylates and down-regulates transcription of the human histone <i>H4c</i> gene and inhibits the growth of several cancer cell lines <i>in vitro</i> and in a murine SW620 xenograft model, without apparent animal toxicity. In this study, we analyzed the effects of 1R-Chl in the chronic myelogenous leukemia cell line K562 and identified another polyamide conjugate, 6R-Chl, which targets H4 genes and elicits a similar cellular response. Other polyamide conjugates that do not target the <i>H4</i> gene do not elicit this response. In a murine model, both 1R-Chl and 6R-Chl were found to be highly effective in blocking K562 xenograft growth with high-dose tolerance. Unlike conventional and distamycin-based alkylators, little or no cytotoxicities and animal toxicities were observed in mg/kg dosage ranges. These results suggest that these polyamide alkylators may be a viable treatment alternative for chronic myelogenous leukemia. [Mol Cancer Ther 2008;7(4):769–78]</p></div>
<div>Abstract<p>We recently identified a polyamide-chlorambucil conjugate, 1R-Chl, which alkylates and down-regulates transcription of the human histone <i>H4c</i> gene and inhibits the growth of several cancer cell lines <i>in vitro</i> and in a murine SW620 xenograft model, without apparent animal toxicity. In this study, we analyzed the effects of 1R-Chl in the chronic myelogenous leukemia cell line K562 and identified another polyamide conjugate, 6R-Chl, which targets H4 genes and elicits a similar cellular response. Other polyamide conjugates that do not target the <i>H4</i> gene do not elicit this response. In a murine model, both 1R-Chl and 6R-Chl were found to be highly effective in blocking K562 xenograft growth with high-dose tolerance. Unlike conventional and distamycin-based alkylators, little or no cytotoxicities and animal toxicities were observed in mg/kg dosage ranges. These results suggest that these polyamide alkylators may be a viable treatment alternative for chronic myelogenous leukemia. [Mol Cancer Ther 2008;7(4):769–78]</p></div>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.