Purpose The purpose of this study is a numerical analysis of transient natural convection in a square partially porous cavity with a heat-generating and heat-conducting element using the local thermal non-equilibrium model under the effect of cooling from the vertical walls. It should be noted that this research deals with a development of passive cooling system for the electronic devices. Design/methodology/approach The domain of interest is a square cavity with a porous layer and a heat-generating element. The vertical walls of the cavity are kept at constant cooling temperature, while the horizontal walls are adiabatic. The heat-generating solid element is located on the bottom wall. A porous layer is placed under the clear fluid layer. The governing equations, formulated in dimensionless stream function, vorticity and temperature variables with corresponding initial and boundary conditions, are solved using implicit finite difference schemes of the second order accuracy. The governing parameters are the Darcy number, viscosity variation parameter, porous layer height and dimensionless time. The effects of varying these parameters on the average total Nusselt number along the heat source surface, the average temperature of the heater, the fluid flow rate inside the cavity and on the streamlines and isotherms are analyzed. Findings The results show that in the case of local thermal non-equilibrium the total average Nusselt number is an increasing function of the interphase heat transfer coefficient and the porous layer thickness, while the average heat source temperature decreases with the Darcy number and viscosity variation parameter. Originality/value An efficient numerical technique has been developed to solve this problem. The originality of this work is to analyze unsteady natural convection within a partially porous cavity using the local thermal non-equilibrium model in the presence of a local heat-generating solid element. The results would benefit scientists and engineers to become familiar with the analysis of convective heat transfer in enclosures with local heat-generating heaters and porous layers, and the way to predict the heat transfer rate in advanced technical systems, in industrial sectors including transportation, power generation, chemical sectors and electronics.
Purpose The purpose of this study is a numerical analysis of steady-state heat transfer behavior of couple-stress nanofluid sandwiched between viscous fluids. It should be noted that this research deals with the development of a cooling system for the electronic devices. Design/methodology/approach Stokes model is used to define the couple-stress fluid and the single-phase nanofluid model is used to define the nanofluid transport processes. The fluids in all regions are assumed to be incompressible, immiscible and the transport properties in all the three layers are assumed to be constant. The governing coupled linear ordinary differential equations are made dimensionless by using appropriate fundamental quantities. The exact solutions obtained for the velocity and temperature fields are evaluated numerically for various model parameters. Findings The results are demonstrated using different types of nanoparticles such as copper, silver, silicon oxide (SiO2), titanium oxide (TiO2) and diamond. The investigations are carried out using copper–water nanofluid for different values of couple-stress parameter a with a range of 0 = a = 12, solid volume fraction ϕ with a range of 0.0 ≤ ϕ ≤ 0.05, Eckert number Ec with a range of 0.001 ≤ Ec ≤ 6 and Prandtl number Pr with a range of 0.001 ≤ Pr ≤ 6. It was found that the Nusselt number increases by increasing the couple stress parameter, Eckert number and Prandtl number and it decreases with a growth of the solid volume fraction parameter. It was also observed that using SiO2–water nanofluid, the optimal Nusselt number is obtained. Further, using copper, silver, diamond and TiO2, nanoparticles and water as a base fluid does not show any significant changes in the rate of heat transfer. The couple-stress parameter enhances the velocity and temperature fields whereas the solid volume fraction suppresses the flow field for both Newtonian and couple-stress fluid. Originality/value The originality of this work is to analyze the heat transfer behavior of couple-stress nanofluid sandwiched between viscous fluids. The results would benefit scientists and engineers to become familiar with the analysis of convective heat transfer and flow structures in nanofluids and the way to predict the heat transfer rate in advanced technical systems, in industrial sectors including transportation, power generation, chemical sectors, electronics, etc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.