Articles you may be interested inGaAsSb/GaAsN short-period superlattices as a capping layer for improved InAs quantum dot-based optoelectronics Appl. Phys. Lett. 105, 043105 (2014); 10.1063/1.4891557Growth of InGaAsP based asymmetric quantum well infrared photodetector using metalorganic vapor phase epitaxy
We demonstrate quantum well infrared photodetectors based on a GaAs/Ga0.51In0.49P superlattice structure grown by gas-source molecular beam epitaxy. Wafers were grown with varying well widths. Wells of 40, 65, and 75 Å resulted in peak detection wavelengths of 10.4, 12.8, and 13.3 μm with a cutoff wavelength of 13.5, 15, and 15.5 μm, respectively. The measured peak and cutoff wavelengths match those predicted by eight band theoretical analysis. Measured dark currents were lower than equivalent GaAs/AlGaAs samples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.