Causal relations among variables may change significantly due to different control strategies and fault types. Off line-based knowledge is not adequate for fault diagnosis, and existing causal models obtained from data driven methods are mostly based on historical data only. However, variable correlation would not remain identical, and could be very different under certain industrial operation conditions. To deal with this problem, a fault diagnosis framework is proposed based on information solely extracted from process data. By this method, mutual information (MI) between each pair of variables is first calculated to obtain thresholds using historical data, as variable correlation under normal conditions is mostly contributed by random noises, which is often neglected in existing causal analysis models. Once a process deviation is detected, each pair of variables with mutual information beyond these thresholds are further investigated by time delayed mutual information (TDMI) analysis using current data, so as to determine the causal logic between them, which is represented as fault propagation paths, can be tracked all the way back to the root cause. The proposed method is first applied to a simulated process and the Tennessee Eastman process. The results show that the difference in variable correlation under diverse operation or control response conditions can be captured in real time, and fault propagation path can be objectively identified, together with the root cause. Then, the method has been successfully applied to a whole year data in an industrial process, which proves the feasibility of industrial application.
Safe and stable operation plays an important role in the chemical industry. Fault detection and diagnosis (FDD) make it possible to identify abnormal process deviations early and assist operators in taking proper action against fault propagation. After decades of development, data-driven process monitoring technologies have gradually attracted attention from process industries. Although many promising FDD methods have been proposed from both academia and industry, challenges remain due to the complex characteristics of industrial data. In this work, classical and recent research on data-driven process monitoring methods is reviewed from the perspective of characterizing and mining industrial data. The implementation framework of data-driven process monitoring methods is first introduced. State of art of process monitoring methods corresponding to common industrial data characteristics are then reviewed. Finally, the challenges and possible solutions for actual industrial applications are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.