Explosion of nanoparticles may be accompanied by optical plasma, generation of shock waves with supersonic expansion and particle fragmentation with fragments of high kinetic energy, all of which can contribute to the killing of cancer cells.
We propose a new method for measuring large-object deformations byusing temporal evolution of the speckles in speckleinterferometry. The principle of the method is that by deformingthe object continuously, one obtains fluctuations in the intensity ofthe speckle. A large number of frames of the object motion arecollected to be analyzed later. The phase data for whole-objectdeformation are then retrieved by inverse Fourier transformation of afiltered spectrum obtained by Fourier transformation of thesignal. With this method one is capable of measuring deformationsof more than 100 mum, which is not possible using conventionalelectronic speckle pattern interferometry. We discuss theunderlying principle of the method and the results of theexperiments. Some nondestructive testing results are alsopresented.
New methods that can be used to determine phase in phase-stepping interferometry are presented. It is shown that a combination of some of these methods can be used to reduce the error introduced by phase-stepper miscalibration and nonlinearity. Moreover these new algorithms can also be used to detect the presence of miscalibration or phase-shifter nonlinearity. A simplified approach to understanding the error introduced by miscalibration and nonlinearity of the phase stepper and its reduction in phase-shifting interferometry is also presented.
In this paper we extend and study the method for generating contours of diffuse objects employing a dual beam illumination coupled with electronic speckle pattern interferometry. The sensitivity and the orientation of the contour planes are analyzed. A novel method for tilting the planes of contours and experimental results incorporating phase shifting and fringe analysis are also presented. The theoretical and the experimental results show good agreement.
We outline a novel method for determining the shape of an object by use of temporal Fourier-transform analysis in dual-beam illumination speckle interferometry. The object whose shape is to be determined is rotated about an axis, and a number of frames of the image of the object motion are acquired. Temporal in-plane displacement that is due to the object rotation is related to the shape of the object and is retrieved from this large set of data by Fourier transformation. With this method one can determine the absolute height of the object with variable resolution, thereby allowing shapes of objects with large and small slopes to be determined. The theory of the method along with experimental results is presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.