We study the feasibility of reaching the ultrastrong (USC) and deep-strong coupling (DSC) regimes of lightmatter interaction, in particular at resonance condition, with a superconducting charge qubit, also known as Cooper-Pair box (CPB). We show that by shunting the charge qubit with a high-impedance LC-circuit, one can maximally reach both USC and DSC regimes exceeding the classical upper bound |g| ≤ √ ωqωr/2 between two harmonic systems with frequencies ωq and ωr. In our case, the fundamental model corresponds to an enhanced quantum Rabi model, which contains a displacement field operator that breaks its internal parity symmetry. Furthermore, we consider a multipartite device consisting of two CPBs ultrastrongly coupled to an oscillator as a mediator and study a quantum state transfer protocol between a pair of transmon qubits, all of them subjected to local incoherent noise channels with realistic parameters. This work opens the door for studying light-matter interactions beyond the quantum Rabi model at extreme coupling strengths, providing a new building block for applications within quantum computation and quantum information processing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.