The in vitro genotoxic activity of mainstream cigarette smoke condensate (CSC) from cigarettes which heat but do not burn tobacco was compared to that of CSC from cigarettes which burn tobacco. CSCs from five cigarettes were compared. Three of the cigarettes [the Kentucky reference research cigarette (1R4F), a commercially available ultra-low tar brand (ULT) and a commercially available ultra-low tar menthol brand (ULT-menthol]) burn tobacco while two of the cigarettes [a regular (TEST) and a menthol (TEST-menthol]) heat tobacco. CSC from all cigarettes were collected by identical standard techniques, which involved collecting mainstream smoke particulate matter on Cambridge filter pads under FTC smoking conditions. The pads were extracted with DMSO, and the CSCs obtained [10 mg total particulate matter (TPM)/ml DMSO] were evaluated at identical concentrations in an in vitro genetic toxicology test battery. CSCs from 1R4F, ULT, and ULT-menthol cigarettes were mutagenic in Ames bacterial strains TA98, TA100, TA1537, and TA1538 in the presence of metabolic activation (S9 from Aroclor-induced rat liver) but negative in strain TA1535. In the absence of metabolic activation, 1R4F, ULT, and ULT-menthol CSCs were not mutagenic except for a weak response in strain TA1537 for the 1R4F and ULT CSCs. TEST and TEST-menthol CSCs were nonmutagenic in all five bacterial strains, both with and without metabolic activation. CSCs from 1R4F, ULT, and ULT-menthol cigarettes were positive in the CHO-chromosomal aberration assay and in the CHO--sister chromatid exchange assay both with and without metabolic activation while TEST and TEST-menthol CSCs were negative in both assays, either with or without metabolic activation. CSCs from 1R4F, ULT, and ULT-menthol cigarettes were weakly positive in inducing DNA repair in cultured rat hepatocytes while TEST and TEST-menthol CSCs were negative in this assay. All five CSCs were nonmutagenic in the CHO-HGPRT assay both with and without metabolic activation. CSCs from the 1R4F, ULT, and ULT-menthol cigarettes were cytotoxic in the CHO-HGPRT assay, both with and without metabolic activation, while TEST and TEST-menthol CSCs were not cytotoxic under either condition. These results demonstrate that mainstream CSCs from the TEST and TEST-menthol cigarettes are neither genotoxic nor cytotoxic under conditions where CSCs from 1R4F, ULT, and ULT-menthol cigarettes are genotoxic and/or cytotoxic in a concentration-dependent manner.
A prototype cigarette that heats tobacco (test cigarette), developed by R.J. Reynolds Tobacco Company, has yielded consistently negative results in several in vivo and in vitro genetic toxicology tests. The objective of the present study was to evaluate the potential of cigarette smoke condensate (CSC) from the test cigarette to induce DNA adducts in mouse tissues and compare the results with those obtained with CSC from a reference tobacco-burning cigarette (1R4F). CD-1 mice were skin-painted with CSC from reference and test cigarettes three times a week for 4 weeks. The highest mass of CSC applied was 180 mg "tar" per week per animal for both reference and test cigarette. DNA adducts were analyzed in skin and lung tissues using the 32P-postlabeling method with the P1 nuclease modification. Distinct diagonal radioactive zones (DRZ) were observed in the DNA from both skin and lung tissues of animals dosed with reference CSC, whereas no corresponding DRZ were observed from the DNA of animals dosed with either test CSC or acetone (solvent control). The relative adduct labeling (RAL) values of skin and lung DNA from reference CSC-treated animals were significantly greater than those of the test CSC-treated animals. The RAL values of the test CSC-treated animals were no greater than those of solvent controls. The negative results in DNA adduct assays with test CSC are consistent with all previous results of in vivo and in vitro genetic toxicology testing on this cigarette and provide additional evidence that smoke condensate from the test cigarette is not genotoxic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.