Summary The offshore Wheatstone liquefied natural gas (LNG) project in Western Australia uses subsea big-bore gas wells as the preferred method of producing the field. Wheatstone wells use a 9⅝-in. production conduit from the top of the gas pay zone to the ocean floor. Wellbores of this size are necessary to match the large productive capacity of the gas reservoirs they penetrate. This producing scenario provides the obvious benefit of yielding large volumes of gas through the use of relatively few wells. Each of those highly productive wells, however, also represents a source of gas that, if accidentally allowed to flow unhindered, could present an uncommonly difficult well-control challenge. It is for this reason that the Wheatstone Drilling and Completions (D&C) Team evaluated a wide range of possible reservoir- and well-architecture scenarios to fully understand the possible scale of relief-well responses that might be necessary in the event of a blowout. The conclusions from this evaluation were surprising. Our original well-design concept called for penetrating the Wheatstone gas reservoirs with a casing shoe set 3,100 ft vertically above. Our analysis indicated that three or four relief wells would be simultaneously required to bring a blowout under control. Because of these results, both the well- and drilling-execution plan were redesigned to minimize the number of required relief wells. In summary, the redesign amounted to setting the casing immediately (i.e., ≤ 10 ft) above the gas reservoir before actually penetrating it, with the resulting benefit of reducing the required number of relief wells to two. Although this reduction is beneficial, it should be noted that there is only one documented subsea case where two or more relief wells have been drilled with the intent of simultaneously pumping into both to effect a dynamic kill. Given this fact, our well-control-related preparations for executing this project were more extensive than those of preceding projects. This paper chronicles the full extent of the engineering and operational planning performed to ensure that no uncontrolled hydrocarbon releases occurred during the execution of the Wheatstone Project's subsea big-bore gas wells and, if a blowout were to occur, that the response to such an unprecedented event would be sufficient and robust. Covered in this paper are reservoir-deliverability modeling, dynamic-kill modeling, gas-plume modeling, relief-well trajectory and mooring planning, pilot-hole-execution planning, a newly applied logging-while-drilling (LWD) technology for sensing resistivity vertically below the drill bit, and a discussion of future research identified as necessary to better define the fluid-injectivity capabilities of subsea relief wells.
Эффективный транспорт частиц выбуренной породы является необходимым услови-ем для успеха всего процесса бурения скважин. При наклонном и горизонтальном бурении, в случае обеспечения хорошей очистки ствола скважины от шлама, появля-ется возможность избежать многих осложнений и добурить до проектной глубины за минимальное время. Несмотря на многочисленные исследования бурения наклонных и горизонтальных скважин, в открытой печати имеется незначительное количество работ, посвященных этой тематике. Рассматривается исследование влияния ряда фак-торов, входящих в процесс бурения скважины, на выбор значения критического рас-хода бурового раствора путем моделирования. В статье используются две модели, разработанные эмпирическим методом: модель Ларсена и модель Рубиандини. Были рассмотрены два сценария моделирования про-цессов транспорта шлама в скважине, пробуренной на шельфе Вьетнама. Расчеты по двум эмпирических моделям показали достаточно хорошую сходимость оптимальных скоростей потока и расхода при разных значениях параметров бурения, таких как плотность бурового раствора, механическая скорость бурения, реология. При вертикальном и наклонном бурении отмечено, что обе модели Ларсена и Рубиандини предсказывают скорости потока, которые близки к скоростям потока, типичных для практики. При горизонтальном бурении расчетные скорости потока выше значений на практике. В заключение приводятся несколько рекомендаций о том, как добиться лучшего выноса шлама и эффективной очистки ствола скважины.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.