Neuropeptide B (NPB) was identified to be an endogenous, peptide ligand for the orphan receptors GPR7 and GPR8. Because GPR7 is expressed in rat brain and, in particular, in the hypothalamus, we hypothesized that NPB might interact with neuroendocrine systems that control hormone release from the anterior pituitary gland. No significant effects of NPB were observed on the in vitro releases of prolactin, adrenocorticotropic hormone (ACTH) or growth hormone (GH) when log molar concentrations ranging from 1 pM to 100 nM NPB were incubated with dispersed anterior pituitary cells harvested from male rats. In addition NPB (100 nM) did not alter the concentration response stimulation of prolactin secretion by thyrotropin-releasing hormone, ACTH secretion by corticotropin-releasing factor (CRF) and GH secretion by GH-releasing hormone. However, NPB, when injected into the lateral cerebroventricle (i.c.v.) of conscious, unrestrained male rats, elevated prolactin and corticosterone, and lowered GH levels in circulation. The threshold dose for the effect on corticosterone and prolactin levels was 1.0 nmol, while that for the effect on GH release was 3.0 nmol NPB. Pretreatment with a polyclonal anti-CRF antiserum completely blocked the ability of NPB to stimulate ACTH release and significantly inhibited the effect of NPB on plasma corticosterone levels. NPB administration i.c.v. did not significantly alter plasma vasopressin and oxytocin levels in conscious rats. It did stimulate feeding (minimum effective dose 1.0 nmol) in sated animals in a manner similar to that of the other endogenous ligand for GPR7, neuropeptide W. We conclude that NPB can act in the brain to modulate neuroendocrine signals accessing the anterior pituitary gland, but does not itself act as a releasing or inhibiting factor in the gland, at least with regard to prolactin, ACTH and GH secretion.
The RF-amide peptides (RFRPs), including prolactin (PRL)-releasing peptide-31 (PrRP-31) and RFRP-1, have been reported to stimulate stress hormone secretion by either direct pituitary or indirect hypothalamic actions. We examined the possible direct effects of these peptides on PRL and adrenocorticotropin (adrenocorticotropic hormone [ACTH]) release from dispersed anterior pituitary cells in culture and on PRL and ACTH secretion following intracerebroventricular (i.c.v.) administration in vivo. Neither peptide significantly altered PRL or ACTH release from cultured pituitary cells (male rat donors). Central administration of 1.0 and 3.0 nmol of PrRP-31, but only the higher dose of RFRP-1, significantly elevated serum corticosterone levels in conscious male rats. The effect of PrRP-31 was not blocked by pretreatment (i.v.) with the corticotropin-releasing hormone (CRH) antagonist, alpha-helical CRH 9-41; however, pretreatment of the animals (i.v.) with an antiserum to CRH significantly lowered the hypothalamic-pituitary- adrenal axis response to central administration of PrRP-31. On the other hand, the release of PRL was significantly elevated by 3.0 nmol of RFRP-1, but not PrRP-31, in similarly treated, conscious male rats. Pretreatment with the catecholamine synthesis inhibitor, alpha-methyl-para-tyrosine, prevented the stimulation of PRL secretion observed following central administration of RFRP-1. RFRP-1 similarly did not alter PRL secretion in rats pretreated with the dopamine, D(2) receptor blocker, domperidone. These results suggest that the RF-amide peptides are not true neuroendocrine regulators of stress hormone secretion in the rat but, instead, act centrally to alter the release of neuroendocrine factors that do act in the pituitary gland to control PRL and ACTH release. In the case of RFRP-1, stimulation of PRL secretion is potentially owing to an action of the peptide to inhibit dopamine release into the median eminence. The corticosterone secretion observed following central administration of PrRP-31 does not appear, based on our current results, to be solely owing to an action of the peptide on CRH-producing neurons but, instead, may be a result of the ability of PrRP-31 to increase as well the exposure of the corticotrophs in vivo to other ACTH secretagogues, such as oxytocin or vasopressin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.