The low-cycle fatigue properties of hot-extruded powders of a Ni3AI-based alloy, IC 218, with nominal composition Ni-1 6.5AI-8.0Cr-0.4Zr-0.1B (at %) have been evaluated at room temperature. Tests were conducted under total strain conditions in a laboratory air environment. Results indicate that the low-cycle fatigue performance of the PM processed IC 218 nickel aluminide is superior to other structural alloys especially at higher strain amplitudes. These results are explained in terms of the high ductility of the fine-grain material and good crack growth propagation resistance in these alloys. Stress response curves for annealed IC 21 8 alloys indicate considerable cyclic hardening followed by cyclic softening. The onset of cyclic softening is found to occur at a constant cumulative plastic strain. The critical cumulative plastic strain criteria are verified for step-loaded IC 21 8 nickel aluminide coupons.
Both high-cycle and low-cycle fatigue properties of hot-extruded powders of a Ni,Al-based alloy, IC218, have been evaluated. High cycle fatigue measurements were performed under stress controlled conditions at temperatures ranging from 25°C to 850°C. Tests were made in both laboratory air and vacuum environments. Low cycle fatigue tests were conducted under total strain control in a laboratory air environment at 650°C. In high cycle fatigue, high ratios of the fatigue limit (Au at lo6 cycles) to monotonic yield strength (uYs), of approximately Au/uys -1, were obtained in the powder extruded IC218 alloy for temperatures ranging from 25°C to 650°C. In low cycle fatigue, a substantial decrease in fatigue life occurred at 650°C, compared to results obtained previously at 25°C. High cycle fatigue performance at low stress/strain amplitudes is better than expected when compared to precipitation strengthened superalloys. The improved performance is explained in terms of the cyclic hardening behavior of the alloy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.