An unprecedented upsurge of COVID-19-positive cases and deaths is currently being witnessed across India. According to WHO, India reported an average of 3.9 lakhs of new cases during the first week of May 2021 which equals 47% of new cases reported globally and 276 daily cases per million population. In this letter, the concept of SIR and fractal interpolation models is applied to predict the number of positive cases in India by approximating the epidemic curve, where the epidemic curve denotes the two-dimensional graphical representation of COVID-19-positive cases in which the abscissa denotes the time, while the ordinate provides the number of positive cases. In order to estimate the epidemic curve, the fractal interpolation method is implemented on the prescribed data set. In particular, the vertical scaling factors of the fractal function are selected from the SIR model. The proposed fractal and SIR model can also be explored for the assessment and modeling of other epidemics to predict the transmission rate. This letter investigates the duration of the second and third waves in India, since the positive cases and death cases of COVID-19 in India have been highly increasing for the past few weeks, and India is in a midst of a catastrophizing second wave. The nation is recording more than 120 million cases of COVID-19, but pandemics are still concentrated in most states. In order to predict the forthcoming trend of the outbreaks, this study implements the SIR and fractal models on daily positive cases of COVID-19 in India and its provinces, namely Delhi, Karnataka, Tamil Nadu, Kerala and Maharashtra.
Nowadays people are interested in using digital images. So the size of the image database is increasing enormously. Lot of interest is paid to find images in the database. There is a great need for developing an efficient technique for finding the images. In order to find an image, image has to be represented with certain features. Color and texture are two important visual features of an image. So, an efficient image retrieval technique which uses local color and texture features is proposed. An image is partitioned into sub-blocks of equal size as a first step. Color of each sub-block is extracted by quantifying the HSV color space into non-equal intervals and the color feature is represented by cumulative histogram. Texture of each sub-block is obtained by using gray level cooccurrence matrix. A one to one matching scheme is used to compare the query and target image. Euclidean distance is used in retrieving the similar images. The efficiency of the method is demonstrated with the results.
General TermsAlgorithm, search, match.
The spindle rotational accuracy is one of the important issues in a machine tool which affects the surface topography and dimensional accuracy of a workpiece. This paper presents a machine-vision-based approach to radial error measurement of a lathe spindle using a CMOS camera and a PC-based image processing system. In the present work, a precisely machined cylindrical master is mounted on the spindle as a datum surface and variations of its position are captured using the camera for evaluating runout of the spindle. The Circular Hough Transform (CHT) is used to detect variations of the centre position of the master cylinder during spindle rotation at subpixel level from a sequence of images. Radial error values of the spindle are evaluated using the Fourier series analysis of the centre position of the master cylinder calculated with the least squares curve fitting technique. The experiments have been carried out on a lathe at different operating speeds and the spindle radial error estimation results are presented. The proposed method provides a simpler approach to on-machine estimation of the spindle radial error in machine tools.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.