Abstract. The latest coronavirus (namely severe acute respiratory syndrome coronavirus 2 or COVID-19) was first detected in Wuhan, China, and spread throughout the world since December 2019. To tackle this pandemic, we need a tool to trace and predict trends of COVID-19 at global, national, and regional levels rapidly. Several organizations around the world offer access to COVID-19 related data. However, these data sources are heterogeneous in terms of data formats and protocols as different organizations developed them. To address this issue, a standard way to handle these datasets is needed. In this paper, we propose using the OGC SensorThings API to manage the COVID-19 dataset in a standard form and provide access to the general public. As a proof-of-concept, we implemented a COVID-19 data management platform based on the OGC SensorThings standard named COVID-19 SensorThings or in short COVID-STA. For a use case, we developed a real-time interactive web-based dashboard illustrating the COVID-19 dataset based on the COVID-STA. As a result, we proved that the OGC SensorThings API is suitable to use as a general standard for integrating the heterogeneous COVID-19 data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.