A photovoltaic intersubband detector based on electron transfer on a cascade of quantum levels is presented: A quantum cascade detector (QCD). The highest photoresponse of intersubband transition-based photovoltaic detectors is demonstrated: 35mA∕W at null bias. The deduced absorption is of the same order of magnitude as that of a classical quantum-well infrared photodetector, i.e., 20%. Because they work with no dark current, QCDs are very promising for small-pixel large focal plane array applications.
A high resistance narrow band quantum cascade photodetector (QCD) is presented. Leakage current has been suppressed, increasing the resistivity, thanks to a design in which coupling barriers have been thickened. Useless cross transitions have been eliminated finally leading to a Johnson noise detectivity at 50 K comparable to quantum well infrared photodetectors. Because they work with no dark current, QCDs are very promising for small pixel and large focal plane array applications.
The transport in complex multiple quantum well heterostructures is theoretically described. The model is focused on quantum cascade detectors, which represent an exciting challenge due to the complexity of the structure containing 7 or 8 quantum wells of different widths. Electronic transport can be fully described without any adjustable parameter. Diffusion from one subband to another is calculated with a standard electron-optical phonon hamiltonian, and the electronic transport results from a parallel flow of electrons using all the possible paths through the different subbands. Finally, the resistance of such a complex device is given by a simple expression, with an excellent agreement with experimental results. This relation involves the sum of transitions rates between subbands, from one period of the device to the next one. This relation appears as an Einstein relation adapted to the case of complex multiple quantum structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.