The APEX Telescope Large Area Survey of the Galaxy (ATLASGAL) is an unbiased 870 µm submillimetre survey of the inner Galactic plane (| | < 60 • with |b| < 1.5 • ). It is the largest and most sensitive ground-based submillimetre wavelength Galactic survey to date and has provided a large and systematic inventory of all massive, dense clumps in the Galaxy (≥1000 M at a heliocentric distance of 20 kpc) and includes representative samples of all of the earliest embedded stages of high-mass star formation. Here we present the first detailed census of the properties (velocities, distances, luminosities and masses) and spatial distribution of a complete sample of ∼8000 dense clumps located in the Galactic disk (5 • < | | < 60 • ). We derive highly reliable velocities and distances to ∼97 per cent of the sample and use midand far-infrared survey data to develop an evolutionary classification scheme that we apply to the whole sample. Comparing the evolutionary subsamples reveals trends for increasing dust temperatures, luminosities and line-widths as a function of evolution indicating that the feedback from the embedded proto-clusters is having a significant impact on the structure and dynamics of their natal clumps. We find that the vast majority of the detected clumps are capable of forming a massive star and 88 per cent are already associated with star formation at some level. We find the clump mass to be independent of evolution suggesting that the clumps form with the majority of their mass in-situ. We estimate the statistical lifetime of the quiescent stage to be ∼5×10 4 yr for clump masses ∼1000 M decreasing to ∼1×10 4 yr for clump masses >10000 M . We find a strong correlation between the fraction of clumps associated with massive stars and peak column density. The fraction is initially small at low column densities but reaching 100 per cent for column densities above 10 23 cm −2 ; there are no clumps with column density clumps above this value that are not already associated with massive star formation. All of the evidence is consistent with a dynamic view of star formation wherein the clumps form rapidly and are initially very unstable so that star formation quickly ensues.
By matching infrared-selected, massive young stellar objects (MYSOs) and compact HII regions in the RMS survey to massive clumps found in the submillimetre ATLASGAL survey, we have identified ∼1000 embedded young massive stars between 280• < ℓ < 350• and 10Combined with an existing sample of radio-selected methanol masers and compact HII regions, the result is a catalogue of ∼1700 massive stars embedded within ∼1300 clumps located across the inner Galaxy, containing three observationally distinct subsamples, methanol-maser, MYSO and HII-region associations, covering the most important tracers of massive star formation, thought to represent key stages of evolution. We find that massive star formation is strongly correlated with the regions of highest column density in spherical, centrally condensed clumps. We find no significant differences between the three samples in clump structure or the relative location of the embedded stars, which suggests that the structure of a clump is set before the onset of star formation, and changes little as the embedded object evolves towards the main sequence. There is a strong linear correlation between clump mass and bolometric luminosity, with the most massive stars forming in the most massive clumps. We find that the MYSO and HII-region subsamples are likely to cover a similar range of evolutionary stages and that the majority are near the end of their main accretion phase. We find few infrared-bright MYSOs associated with the most massive clumps, probably due to very short pre-main sequence lifetimes in the most luminous sources.
Context. Massive-star formation and the processes involved are still poorly understood. The ATLASGAL survey provides an ideal basis for detailed studies of large numbers of massive-star forming clumps covering the whole range of evolutionary stages. The ATLASGAL Top100 is a sample of clumps selected by their infrared and radio properties to be representative for the whole range of evolutionary stages. Aims. The ATLASGAL Top100 sources are the focus of a number of detailed follow-up studies that will be presented in a series of papers. In the present work we use the dust continuum emission to constrain the physical properties of this sample and identify trends as a function of source evolution. Methods. We determine flux densities from mid-infrared to submillimeter wavelength (8-870 µm) images and use these values to fit their spectral energy distributions and determine their dust temperature and flux. Combining these with recent distances from the literature including maser parallax measurements we determine clump masses, luminosities and column densities. Results. We define four distinct source classes from the available continuum data and arrange these into an evolutionary sequence. This begins with sources found to be dark at 70 µm, followed by 24 µm weak sources with an embedded 70 µm source, continues through mid-infrared bright sources and ends with infrared bright sources associated with radio emission (i.e., H ii regions). We find trends for increasing temperature, luminosity, and column density with the proposed evolution sequence, confirming that this sample is representative of different evolutionary stages of massive star formation. Our sources span temperatures from approximately 11 to 41 K, with bolometric luminosities in the range 57 L −3.8 × 10 6 L . The highest masses reach 4.3 × 10 4 M and peak column densities up to 1.1 × 10 24 cm −1 , and therefore have the potential to form the most massive O-type stars. We show that at least 93 sources (85%) of this sample have the ability to form massive stars and that most are gravitationally unstable and hence likely to be collapsing. Conclusions. The highest column density ATLASGAL sources cover the whole range of evolutionary stages from the youngest to the most evolved high-mass-star forming clumps. Study of these clumps provides a unique starting point for more in-depth research on massive-star formation in four distinct evolutionary stages whose well defined physical parameters afford more detailed studies. As most of the sample is closer than 5 kpc, these sources are also ideal for follow-up observations with high spatial resolution.
Using the 870-µm APEX Telescope Large Area Survey of the Galaxy (ATLASGAL), we have identified 577 submillimetre continuum sources with masers from the methanol multibeam (MMB) survey in the region 280 • < ℓ < 20 • ; | b | < 1.5 • . 94 per cent of methanol masers in the region are associated with sub-millimetre dust emission. We estimate masses for ∼450 maser-associated sources and find that methanol masers are preferentially associated with massive clumps. These clumps are centrally condensed, with envelope structures that appear to be scale-free, the mean maser position being offset from the peak column density by 0 ± 4 ′′ . Assuming a Kroupa initial mass function and a star-formation efficiency of ∼30 per cent, we find that over two thirds of the clumps are likely to form clusters with masses >20 M ⊙ . Furthermore, almost all clumps satisfy the empirical mass-size criterion for massive star formation. Bolometric luminosities taken from the literature for ∼100 clumps range between ∼100 and 10 6 L ⊙ . This confirms the link between methanol masers and massive young stars for 90 per cent of our sample. The Galactic distribution of sources suggests that the starformation efficiency is significantly reduced in the Galactic-centre region, compared to the rest of the survey area, where it is broadly constant, and shows a significant drop in the massive star-formation rate density in the outer Galaxy. We find no enhancement in source counts towards the southern Scutum-Centaurus arm tangent at ℓ ∼ 315 • , which suggests that this arm is not actively forming stars.
Context. Observational identification of a solid evolutionary sequence for high-mass star-forming regions is still missing. Spectroscopic observations give the opportunity to test possible schemes and connect the phases identified to physical processes. Aims. We aim to use the progressive heating of the gas caused by the feedback of high-mass young stellar objects to prove the statistical validity of the most common schemes used to observationally define an evolutionary sequence for high-mass clumps, and characterise the sensitivity of different tracers to this process. Methods. From the spectroscopic follow-ups carried out towards submillimeter continuum (dust) emission-selected massive clumps (the ATLASGAL TOP100 sample) with the IRAM 30 m, Mopra, and APEX telescopes between 84 GHz and 365 GHz, we selected several multiplets of CH 3 CN, CH 3 CCH, and CH 3 OH emission lines to derive and compare the physical properties of the gas in the clumps along the evolutionary sequence, fitting simultaneously the large number of lines that these molecules have in the observed band. Our findings are compared with results obtained from optically thin CO isotopologues, dust, and ammonia from previous studies on the same sample. Results. The chemical properties of each species have a major role on the measured physical properties. Low temperatures are traced by ammonia, methanol, and CO (in the early phases), the warm and dense envelope can be probed with CH 3 CN, CH 3 CCH, and, in evolved sources where CO is abundant in the gas phase, via its optically thin isotopologues. CH 3 OH and CH 3 CN are also abundant in the hot cores, and we suggest that their high-excitation transitions are good tools to study the kinematics in the hot gas associated with the inner envelope surrounding the young stellar objects that these clumps are hosting. All tracers show, to different degrees according to their properties, progressive warming with evolution. The relation between gas temperature and the luminosity-to-mass (L/M) ratio is reproduced by a simple toy model of a spherical, internally heated clump. Hii regions become common, showing that dissipation of the parental clump dominates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.