The photovoltaic (PV) systems must work at the maximum power point (MPP) to derive the highest possible power with the higher performance during a change in operating conditions. The primary objective is to implement a novel hybrid tracking algorithm to extract the maximum output power from the solar PV panel or array under partial shading conditions (PSCs). This hybrid MPP tracking algorithm is based on the salp swarm algorithm (SSA), which finds the initial global peak (GP) operating point and is followed by the perturb and observation (P&O) algorithm in the last stage to realize a faster convergence rate. Thus, the computational burden met by the conventional methods such as standalone P&O, hybrid grey-wolf-optimization (HGWO), and hybrid whale-optimization algorithm (HWOA) algorithm reported in the literature is overcome by the proposed hybrid SSA algorithm called HSSA. The P&O algorithm searches the MPP in the projected search space by the SSA algorithm. The proposed hybrid algorithm is simulated using MATLAB/Simulink simulation tool to validate the effectiveness of tracking the MPP. The hybrid SSA is compared with the standalone P&O, hybrid WOA, and hybrid GWO, and from the simulation results, it is proved that the hybrid tracking algorithm exhibits a high tracking performance.
The reliability of the photovoltaic models is strongly reliant on their parameters, which are primarily determined by the optimization algorithm and the objective function. As a result, obtaining the parameters under different environmental conditions is critical for increasing their performance, reliability and significantly lowering cost. Many optimization techniques are reported to address this problem based on the complexity. As a result, an enhanced version of the recently reported Hunger Games Search Optimizer (HGSO) method called Gaussian and Cauchy Mutation‐based HGSO (GCMHGSO) algorithm for defining the requirements of the Three‐Diode equivalent Model (TDeM) by utilizing multiple representations in the algorithm along with an efficient objective function. The Cauchy mutation increases the exploration ability, and Gaussian mutation increases the exploitation ability of the basic HGSO. Furthermore, an Enhanced Newton–Raphson Method (ENRM) is presented to effectively solve the behaviour of the current–voltage relation of the TDeM. The robust optimization is also considered to demonstrate the impact of the measurement error. Comparing the GCMHGSO‐ENRM to other competitors reveals that the proposed GCMHGSO‐ENRM can accurately find the best solution, and its effectiveness is verified in many statistical parameters. It is found that the GCMHGSO‐ENRM algorithm is stable and robust compared to other competitors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.