Benzoylformate decarboxylase (BFD) from Pseudomonas putida is an exceptional thiamin diphosphate-dependent enzyme, as it catalyzes the formation of (S)-2-hydroxy-1-phenylpropan-1-one from benzaldehyde and acetaldehyde. This is the only currently known S-selective reaction (92 % ee) catalyzed by this otherwise R-selective class of enzymes. Here we describe the molecular basis of the introduction of S selectivity into ThDP-dependent decarboxylases. By shaping the active site of BFD through the use of rational protein design, structural analysis, and molecular modeling, optimal steric stabilization of the acceptor aldehyde in a structural element called the S pocket was identified as the predominant interaction for adjusting stereoselectivity. Our studies revealed Leu461 as a hot spot for stereoselectivity in BFD. Exchange to alanine and glycine resulted in variants that catalyze the S-stereoselective addition of larger acceptor aldehydes, such as propanal with benzaldehyde and its derivatives-a reaction not catalyzed by the wild-type enzyme. Crystal structure analysis of the variant BFDL461A supports the modeling studies.
Despite more than five decades of extensive studies of thiamin diphosphate (ThDP) enzymes, there remain many uncertainties as to how these enzymes achieve their rate enhancements. Here, we present a clear picture of catalysis for the simple nonoxidative decarboxylase, oxalyl-coenzyme A (CoA) decarboxylase, based on crystallographic snapshots along the catalytic cycle and kinetic data on active site mutants. First, we provide crystallographic evidence that, upon binding of oxalyl-CoA, the C-terminal 13 residues fold over the substrate, aligning the substrate alpha-carbon for attack by the ThDP-C2 atom. The second structure presented shows a covalent reaction intermediate after decarboxylation, interpreted as being nonplanar. Finally, the structure of a product complex is presented. In accordance with mutagenesis data, no side chains of the enzyme are implied to directly participate in proton transfer except the glutamic acid (Glu-56), which promotes formation of the 1',4'-iminopyrimidine tautomer of ThDP needed for activation.
Oxalyl-coenzyme A decarboxylase is a thiamin diphosphate-dependent enzyme that plays an important role in the catabolism of the highly toxic compound oxalate. We have determined the crystal structure of the enzyme from Oxalobacter formigenes from a hemihedrally twinned crystal to 1.73 Å resolution and characterized the steady-state kinetic behavior of the decarboxylase. The monomer of the tetrameric enzyme consists of three ␣/-type domains, commonly seen in this class of enzymes, and the thiamin diphosphatebinding site is located at the expected subunit-subunit interface between two of the domains with the cofactor bound in the conserved V-conformation. Although oxalyl-CoA decarboxylase is structurally homologous to acetohydroxyacid synthase, a molecule of ADP is bound in a region that is cognate to the FAD-binding site observed in acetohydroxyacid synthase and presumably fulfils a similar role in stabilizing the protein structure. This difference between the two enzymes may have physiological importance since oxalyl-CoA decarboxylation is an essential step in ATP generation in O. formigenes, and the decarboxylase activity is stimulated by exogenous ADP. Despite the significant degree of structural conservation between the two homologous enzymes and the similarity in catalytic mechanism to other thiamin diphosphate-dependent enzymes, the active site residues of oxalyl-CoA decarboxylase are unique. A suggestion for the reaction mechanism of the enzyme is presented.Oxalic acid is one of nature's most highly oxidized organic compounds, and its dianion is a strong chelator of metal cations, especially Ca 2ϩ , causing oxalate to be highly toxic to many organisms (1). In humans, elevated levels of oxalate are associated with several diseases, including the formation of calcium oxalate stones in the kidney (urolithiasis), renal failure, cardiomyopathy, and cardiac conductance disorders (1-3). Relatively large amounts of oxalate are introduced into the body through the diet, although this diacid may also arise as a byproduct of normal cellular metabolism (4). Because humans, in common with other mammals, are not able to degrade oxalate, this compound must be eliminated by excretion in the urine or via the intestine (5). The recent observation that a symbiotic, gut-dwelling bacterium, Oxalobacter formigenes, may regulate oxalate homeostasis in humans, therefore, has important implications for efforts to develop new strategies for treating oxalate-related diseases (6). O. formigenes is an obligate anaerobe bacterium found in the gastrointestinal tracts of vertebrates, including humans, and is unusual in that it employs oxalate as the sole energy source for its survival (7,8). As a result, this bacterium not only degrades free oxalate entering the intestine lumen but also creates a transepithelial gradient favoring oxalate secretion and preventing absorption of oxalic acid in the lower tract of the intestine (9). A direct correlation between the number of recurrent kidney stone episodes and a lack of O. formigenes in the ...
The thiamin diphosphate (ThDP) dependent branched-chain keto acid decarboxylase (KdcA) from Lactococcus lactis catalyzes the decarboxylation of 3-methyl-2-oxobutanoic acid to 3-methylpropanal (isobutyraldehyde) and CO2. The enzyme is also able to catalyze carboligation reactions with an exceptionally broad substrate range, a feature that makes KdcA a potentially valuable biocatalyst for C-C bond formation, in particular for the enzymatic synthesis of diversely substituted 2-hydroxyketones with high enantioselectivity. The crystal structures of recombinant holo-KdcA and of a complex with an inhibitory ThDP analogue mimicking a reaction intermediate have been determined to resolutions of 1.6 and 1.8 A, respectively. KdcA shows the fold and cofactor-protein interactions typical of thiamin-dependent enzymes. In contrast to the tetrameric assembly displayed by most other ThDP-dependent decarboxylases of known structure, KdcA is a homodimer. The crystal structures provide insights into the structural basis of substrate selectivity and stereoselectivity of the enzyme and thus are suitable as a framework for the redesign of the substrate profile in carboligation reactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.