The memory effect of a trilayer structure (rapid thermal oxide/Ge nanocrystals in SiO2/sputtered SiO2) was investigated via capacitance versus voltage (C–V) measurements. The Ge nanocrystals were synthesized by rapid thermal annealing of the cosputtered Ge+SiO2 films. The memory effect was manifested by the hysteresis in the C–V curve. Transmission electron microscope and C–V results indicated that the hysteresis was due to Ge nanocrystals in the middle layer of the trilayer structure.
Articles you may be interested inCharge retention enhancement in stack nanocrystalline-Si based metal-insulator-semiconductor memory structure Appl.Annealing temperature dependence of capacitance-voltage characteristics in Ge-nanocrystal-based nonvolatile memory structures J. Appl. Phys. 99, 036101 (2006); 10.1063/1.2168249 Conduction mechanisms and charge storage in Si-nanocrystals metal-oxide-semiconductor memory devices studied with conducting atomic force microscopy J. Appl. Phys. 98, 056101 (2005); 10.1063/1.2010626 Investigation of Ge nanocrytals in a metal-insulator-semiconductor structure with a Hf O 2 ∕ Si O 2 stack as the tunnel dielectric Appl. Phys. Lett. 86, 113105 (2005); 10.1063/1.1864254Observation of memory effect in germanium nanocrystals embedded in an amorphous silicon oxide matrix of a metal-insulator-semiconductor structure
Rare earth (Tb or Ce)-doped silicon oxides were deposited by electron cyclotron resonance plasma-enhanced chemical vapour deposition (ECR-PECVD). Silicon nanocrystals (Si-ncs) were formed in the silicon-rich films during certain annealing processes. Photoluminescence (PL) properties of the films were found to be highly dependent on the deposition parameters and annealing conditions. We propose that the presence of a novel sensitizer in the Tb-doped oxygen-rich films is responsible for the indirect excitation of the Tb emission, while in the Tb-doped silicon-rich films the Tb emission is excited by the Si-ncs through an exciton-mediated energy transfer. In the Ce-doped oxygen-rich films, an abrupt increase of the Ce emission intensity was observed after annealing at
1200∘C. This effect is tentatively attributed to the formation of Ce silicate. In the Ce-doped silicon-rich films, the Ce emission was absent at annealing temperatures lower than 1100∘C due to the strong absorption of Si-ncs. Optimal film compositions and annealing conditions for maximizing the PL intensities of the rare earths in the films have been determined. The light emissions from these films were very bright and can be easily observed even under room lighting conditions.
Revealing the nature of intrinsic defects that act as charge-carrier trapping centers for persistent luminescence (PersL) in inorganic phosphors remains a crucial challenge from an experimental perspective. It was recently reported that Bi 3+ -doped LiREGeO 4 (RE = Sc, Y, Lu) compounds displayed strong ultraviolet-A PersL at ∼360 nm with a duration of tens of hours at room temperature. However, the mechanistic origin of the PersL remains to be unveiled. Herein, we carried out a systematic study on optical transitions, formation energies, and charge-transition levels of dopants and intrinsic point defects in these compounds using hybrid density functional theory calculations. The results show that the efficient charging by 254 nm is due to the D-band transition of Bi 3+ and hence the charge carriers pertinent to PersL are electrons originating from the dopants which are involved in the trapping and detrapping processes. The main electron-trapping centers are antisite defects Ge Li 0 , interstitial defects Li i 0 , and dopants Bi 2+ , with the former one responsible for the strong PersL and the latter two for its long-time duration. These findings are further confirmed by comparison with calculated results for isostructural NaLuGeO 4 and LiLuSiO 4 , based on which the roles of Li and Ge elements in forming intrinsic defects with appropriate trap depths for PersL are clarified. Our results not only assist in the understanding of experimental observations but also provide a theoretical basis for the rational design of novel PersL phosphors containing lithium and germanium in the host compound.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.