In this work, attempts have been made to improve the oxidation resistance of Fe-Si alloys with 0.5, 1.0 and 2.0 mass pct Si by a preheating treatment, which was carried out at 1073 K for 24 hours in high purity hydrogen atmosphere. Compared with pure Fe and untreated Fe-Si alloys, the oxidation resistance of the preheated Fe-Si alloys at 673 K in O2 is drastically increased, in the case of 2 mass pct Si by two orders of magnitude. The improvement is attributed to a uniform, dense and continuous 25 nm pure SiO2 layer formed on the alloy surface during the preheating treatment in hydrogen atmosphere hindering the diffusion of Fe and O.
Al2O3/Cu composite material (ACCM) are highly suitable for various advanced applications owing to its excellent properties. In the present work, a combination of the solution combustion synthesis and hydrogen reduction method was first employed to prepare Al2O3/Cu composite powder (ACCP), and subsequently ACCM was prepared by employing spark plasma sintering (SPS) technique. The effect of Al2O3 contents and SPS temperatures on the properties (relative density, hardness, friction coefficient, and electrical conductivity, et al.) of ACCM were investigated in detail. The results indicated that ACCM was very dense, and microstructure was consisted of fine Al2O3 particles evenly distributed in the Cu matrix. With the increase of SPS temperature, the relative density and hardness of ACCM had first increased and then decreased. At 775 °C, the relative density and hardness had attained the maximum values of 98.19% and 121.4 HV, respectively. With the increase of Al2O3 content, although the relative density of ACCM had gradually decreased, nevertheless, its friction coefficient had increased. Moreover, with the increase of Al2O3 contents, the hardness of ACCM first increased and then decreased, and reached the maximum value (121.4 HV) with 3 wt.% addition. On the contrary, the wear rate of ACCM had first decreased and then increased with the increase of Al2O3 contents, and attained the minimum (2.32 × 10−5 mm3/(N.m)) with 3 wt.% addition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.