ABSTRACT. Although gerbils have been widely used in many areas of biological research over many years, there is currently no effective genetic quality control system available. In the present study, we sought to establish a microsatellite marker system for quality control and conducted an optimized analysis of 137 microsatellite loci in two laboratory gerbil populations and one wild population. Independent sample t-tests on the mean effective allele number, mean of Shannon's information index, and mean H E suggested that 28 of the 137 microsatellite markers were informative for gerbil genetic control. Analysis of 4 laboratory gerbil populations and 1 wild population using the 28 microsatellite loci indicated that allele numbers varied from 1.9639 (Guangzhou, GZ) to 6.6071 (North-West wild, NW). (2015) tions, respectively. The GZ population showed the greatest differentiation, having higher R ST and Nei's standard genetic distances. An AMO-VA revealed high genetic differentiation among the five populations (F ST = 0.296). The microsatellite system established here is effective and will be important in future studies for genetic quality control and monitoring of gerbil breeds.
ABSTRACT. Meriones unguiculatus (Gerbillinae, Rodentia) is widely used as an animal model of human disease. Here, we provide the first report of the complete mitochondrial genome sequence of M. unguiculatus (GenBank accession Nos. KF425526 and NC_023263). The sequence contained the conserved vertebrate pattern of 13 proteincoding genes, 2 ribosomal RNAs, 22 transfer RNAs, and 1 major noncoding region. We identified one extended termination-associated sequence and one conserved sequence block in the non-coding region. The putative origin of replication for the light strand (O L ) was 35 bp long. The O L stem and adjacent sequences were highly conserved, but the loop region differed from those of other rodent species. Base composition and codon usage of the 13 protein-coding genes in M. unguiculatus were compared with those of 23 rodent species with previously sequenced mitochondrial genomes. An A+T content of 63.0% was present in M. unguiculatus; this is similar to the Murinae average (62.4 ± 0.8%) and falls between the average for Mus musculus (63.1 ± 0.1%) and Rattus sp (61.7 ± 0.4%). The AT and GC skew values of M. unguiculatus were 0.035 and -0.28, respectively, similar to those of Cricetinae species (0.057 ± 0.05 and -0.31 ± 0.05). The codon families exhibited similar abundance in all 24 species. Analysis of phylogenetic relationships with 23 other rodent species using neighbor-joining and maximum likelihood protocols and the 12 protein-coding regions on the H strand showed that M. unguiculatus should be classified as genus Meriones, sub-family Gerbillinae, family Muridae.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.