We propose a gradient radial basis function based varying-coefficient autoregressive (GRBF-AR) model for modeling and predicting time series that exhibit nonlinearity and homogeneous nonstationarity. This GRBF-AR model is a synthesis of the gradient RBF and the functional-coefficient autoregressive (FAR) model. The gradient RBFs, which react to the gradient of the series, are used to construct varying coefficients of the FAR model. The Mackey-Glass chaotic time series are used to evaluate the performance of the proposed method. It is shown that the GRBF-AR model not only achieves much more parsimonious structure but also much better prediction performance than that of GRBF network.Index Terms-Functional-coefficient autoregressive model, gradient radial basis function, nonlinear and nonstationary time series, separable nonlinear least squares.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.