Various remote sensing observations have shown the existence of water and related species around the lunar poles (Lucey et al., 2021, and references therein). Potential water sources include meteoroid and comet impacts (Ong et al., 2010), solar wind implantation (Hurley et al., 2017), and volcanic outgassing (Head et al., 2020;Needham & Kring, 2017). Water delivery to the lunar surface was likely more active during and before the Imbrian era (≳3.2 Ga) than at present because of a higher rate of asteroid and comet impacts, and enhanced volcanic outgassing. However, competing processes may have redistributed water over time. A key issue is whether the observed surface water indicates recent or ancient deposition. The present study seeks possible interpretations of the existence of ancient water (≳3.2 Ga) in the subsurface areas on lunar south polar complex craters by considering the net effect on water redistribution due to topographic diffusion (
<p><strong>Introduction:&#160;</strong>Repeated impact events on the Moon are the main drivers of the degradation of the lunar surface. This process, known as topographic diffusion, is the scattering of the regolith which causes the eventual erasure of impact craters due to overlapping and adjacent impactors [1-6]. Visual results of this can be observed by looking at different rates of degradation among lunar south pole complex craters.</p> <p>Complex craters exhibit landslide morphologies on their walls over a range of sizes. These events are directly linked to the process of topographic diffusion. Within our study, we analyze 16 complex crater morphologies and degradation states to determine the relative wall strength. We find that there is a crater diameter population transition at 600-800 m with larger populations showing significant reduction. We attribute this finding to the induction of landslide events from larger impactors, while smaller impactors do not have enough energy to do so.</p> <p><strong>Methods:&#160;</strong>We first utilize ArcMap 10.7.1 and the CraterTools [7] add in toolset to crater count on the walls of the complex craters. We use available DEM&#8217;s from LOLA/LRO data, Hillshade and Slope overlays, Buffer (Analysis) Tool, and Add Surface Information (3D Analyst) Tool. The Hillshade and Slope overlays grant us visibility of the lunar surface down to a 20m/pixel resolution in an otherwise partially permanently shadowed area [8]. For each crater count, we determine the slope conditions for the emplacement by creating a 1-pixel buffer around the rim and calculating the average slope of each overlapping pixel based off of our Slope overlay (Figure 1).</p> <p><img src="data:image/jpeg;base64, /9j/4AAQSkZJRgABAQAAkACQAAD/4QCeRXhpZgAATU0AKgAAAAgABQESAAMAAAABAAEAAAEaAAUAAAABAAAASgEbAAUAAAABAAAAUgEoAAMAAAABAAIAAIdpAAQAAAABAAAAWgAAAAAAAACQAAAAAQAAAJAAAAABAAOShgAHAAAAEgAAAISgAgAEAAAAAQAABDSgAwAEAAAAAQAAA1wAAAAAQVNDSUkAAABTY3JlZW5zaG90/+EJIWh0dHA6Ly9ucy5hZG9iZS5jb20veGFwLzEuMC8APD94cGFja2V0IGJlZ2luPSLvu78iIGlkPSJXNU0wTXBDZWhpSHpyZVN6TlRjemtjOWQiPz4gPHg6eG1wbWV0YSB4bWxuczp4PSJhZG9iZTpuczptZXRhLyIgeDp4bXB0az0iWE1QIENvcmUgNS40LjAiPiA8cmRmOlJERiB4bWxuczpyZGY9Imh0dHA6Ly93d3cudzMub3JnLzE5OTkvMDIvMjItcmRmLXN5bnRheC1ucyMiPiA8cmRmOkRlc2NyaXB0aW9uIHJkZjphYm91dD0iIi8+IDwvcmRmOlJERj4gPC94OnhtcG1ldGE+ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgPD94cGFja2V0IGVuZD0idyI/PgD/7QA4UGhvdG9zaG9wIDMuMAA4QklNBAQAAAAAAAA4QklNBCUAAAAAABDUHYzZjwCyBOmACZjs+EJ+/+IP8ElDQ19QUk9GSUxFAAEBAAAP4GFwcGwCEAAAbW50clJHQiBYWVogB+UABAAOAAEAGgATYWNzcEFQUEwAAAAAQVBQTAAAAAAAAAAAAAAAAAAAAAAAAPbWAAEAAAAA0y1hcHBsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAASZGVzYwAAAVwAAABiZHNjbQAAAcAAAASCY3BydAAABkQAAAAjd3RwdAAABmgAAAAUclhZWgAABnwAAAAUZ1hZWgAABpAAAAAUYlhZWgAABqQAAAAUclRSQwAABrgAAAgMYWFyZwAADsQAAAAgdmNndAAADuQAAAAwbmRpbgAADxQAAAA+Y2hhZAAAD1QAAAAsbW1vZAAAD4AAAAAodmNncAAAD6gAAAA4YlRSQwAABrgAAAgMZ1RSQwAABrgAAAgMYWFiZwAADsQAAAAgYWFnZwAADsQAAAAgZGVzYwAAAAAAAAAIRGlzcGxheQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAG1sdWMAAAAAAAAAJgAAAAxockhSAAAAFAAAAdhrb0tSAAAADAAAAexuYk5PAAAAEgAAAfhpZAAAAAAAEgAAAgpodUhVAAAAFAAAAhxjc0NaAAAAFgAAAjBkYURLAAAAHAAAAkZubE5MAAAAFgAAAmJmaUZJAAAAEAAAAnhpdElUAAAAFAAAAohlc0VTAAAAEgAAApxyb1JPAAAAEgAAApxmckNBAAAAFgAAAq5hcgAAAAAAFAAAAsR1a1VBAAAAHAAAAthoZUlMAAAAFgAAAvR6aFRXAAAACgAAAwp2aVZOAAAADgAAAxRza1NLAAAAFgAAAyJ6aENOAAAACgAAAwpydVJVAAAAJAAAAzhlbkdCAAAAFAAAA1xmckZSAAAAFgAAA3BtcwAAAAAAEgAAA4ZoaUlOAAAAEgAAA5h0aFRIAAAADAAAA6pjYUVTAAAAGAAAA7ZlbkFVAAAAFAAAA1xlc1hMAAAAEgAAApxkZURFAAAAEAAAA85lblVTAAAAEgAAA95wdEJSAAAAGAAAA/BwbFBMAAAAEgAABAhlbEdSAAAAIgAABBpzdlNFAAAAEAAABDx0clRSAAAAFAAABExwdFBUAAAAFgAABGBqYUpQAAAADAAABHYATABDAEQAIAB1ACAAYgBvAGoAac7st+wAIABMAEMARABGAGEAcgBnAGUALQBMAEMARABMAEMARAAgAFcAYQByAG4AYQBTAHoA7QBuAGUAcwAgAEwAQwBEAEIAYQByAGUAdgBuAP0AIABMAEMARABMAEMARAAtAGYAYQByAHYAZQBzAGsA5gByAG0ASwBsAGUAdQByAGUAbgAtAEwAQwBEAFYA5AByAGkALQBMAEMARABMAEMARAAgAGMAbwBsAG8AcgBpAEwAQwBEACAAYwBvAGwAbwByAEEAQwBMACAAYwBvAHUAbABlAHUAciAPAEwAQwBEACAGRQZEBkgGRgYpBBoEPgQ7BEwEPgRABD4EMgQ4BDkAIABMAEMARCAPAEwAQwBEACAF5gXRBeIF1QXgBdlfaYJyAEwAQwBEAEwAQwBEACAATQDgAHUARgBhAHIAZQBiAG4A/QAgAEwAQwBEBCYEMgQ1BEIEPQQ+BDkAIAQWBBoALQQ0BDgEQQQ/BDsENQQ5AEMAbwBsAG8AdQByACAATABDAEQATABDAEQAIABjAG8AdQBsAGUAdQByAFcAYQByAG4AYQAgAEwAQwBECTAJAgkXCUAJKAAgAEwAQwBEAEwAQwBEACAOKg41AEwAQwBEACAAZQBuACAAYwBvAGwAbwByAEYAYQByAGIALQBMAEMARABDAG8AbABvAHIAIABMAEMARABMAEMARAAgAEMAbwBsAG8AcgBpAGQAbwBLAG8AbABvAHIAIABMAEMARAOIA7MDxwPBA8kDvAO3ACADvwO4A8wDvQO3ACAATABDAEQARgDkAHIAZwAtAEwAQwBEAFIAZQBuAGsAbABpACAATABDAEQATABDAEQAIABhACAAQwBvAHIAZQBzMKsw6TD8AEwAQwBEAAB0ZXh0AAAAAENvcHlyaWdodCBBcHBsZSBJbmMuLCAyMDIxAABYWVogAAAAAAAA8xYAAQAAAAEWylhZWiAAAAAAAABxwAAAOYoAAAFnWFlaIAAAAAAAAGEjAAC55gAAE/ZYWVogAAAAAAAAI/IAAAyQAAC90GN1cnYAAAAAAAAEAAAAAAUACgAPABQAGQAeACMAKAAtADIANgA7AEAARQBKAE8AVABZAF4AYwBoAG0AcgB3AHwAgQCGAIsAkACVAJoAnwCjAKgArQCyALcAvADBAMYAywDQANUA2wDgAOUA6wDwAPYA+wEBAQcBDQETARkBHwElASsBMgE4AT4BRQFMAVIBWQFgAWcBbgF1AXwBgwGLAZIBmgGhAakBsQG5AcEByQHRAdkB4QHpAfIB+gIDAgwCFAIdAiYCLwI4AkECSwJUAl0CZwJxAnoChAKOApgCogKsArYCwQLLAtUC4ALrAvUDAAMLAxYDIQMtAzgDQwNPA1oDZgNyA34DigOWA6IDrgO6A8cD0wPgA+wD+QQGBBMEIAQtBDsESARVBGMEcQR+BIwEmgSoBLYExATTBOEE8AT+BQ0FHAUrBToFSQVYBWcFdwWGBZYFpgW1BcUF1QXlBfYGBgYWBicGNwZIBlkGagZ7BowGnQavBsAG0QbjBvUHBwcZBysHPQdPB2EHdAeGB5kHrAe/B9IH5Qf4CAsIHwgyCEYIWghuCIIIlgiqCL4I0gjnCPsJEAklCToJTwlkCXkJjwmkCboJzwnlCfsKEQonCj0KVApqCoEKmAquCsUK3ArzCwsLIgs5C1ELaQuAC5gLsAvIC+EL+QwSDCoMQwxcDHUMjgynDMAM2QzzDQ0NJg1ADVoNdA2ODakNww3eDfgOEw4uDkkOZA5/DpsOtg7SDu4PCQ8lD0EPXg96D5YPsw/PD+wQCRAmEEMQYRB+EJsQuRDXEPURExExEU8RbRGMEaoRyRHoEgcSJhJFEmQShBKjEsMS4xMDEyMTQxNjE4MTpBPFE+UUBhQnFEkUahSLFK0UzhTwFRIVNBVWFXgVmxW9FeAWAxYmFkkWbBaPFrIW1hb6Fx0XQRdlF4kXrhfSF/cYGxhAGGUYihivGNUY+hkgGUUZaxmRGbcZ3RoEGioaURp3Gp4axRrsGxQbOxtjG4obshvaHAIcKhxSHHscoxzMHPUdHh1HHXAdmR3DHeweFh5AHmoelB6+HukfEx8+H2kflB+/H+ogFSBBIGwgmCDEIPAhHCFIIXUhoSHOIfsiJyJVIoIiryLdIwojOCNmI5QjwiPwJB8kTSR8JKsk2iUJJTglaCWXJccl9yYnJlcmhya3JugnGCdJJ3onqyfcKA0oPyhxKKIo1CkGKTgpaymdKdAqAio1KmgqmyrPKwIrNitpK50r0SwFLDksbiyiLNctDC1BLXYtqy3hLhYuTC6CLrcu7i8kL1ovkS/HL/4wNTBsMKQw2zESMUoxgjG6MfIyKjJjMpsy1DMNM0YzfzO4M/E0KzRlNJ402DUTNU01hzXCNf02NzZyNq426TckN2A3nDfXOBQ4UDiMOMg5BTlCOX85vDn5OjY6dDqyOu87LTtrO6o76DwnPGU8pDzjPSI9YT2hPeA+ID5gPqA+4D8hP2E/oj/iQCNAZECmQOdBKUFqQaxB7kIwQnJCtUL3QzpDfUPARANER0SKRM5FEkVVRZpF3kYiRmdGq0bwRzVHe0fASAVIS0iRSNdJHUljSalJ8Eo3Sn1KxEsMS1NLmkviTCpMcky6TQJNSk2TTdxOJU5uTrdPAE9JT5NP3VAnUHFQu1EGUVBRm1HmUjFSfFLHUxNTX1OqU/ZUQlSPVNtVKFV1VcJWD1ZcVqlW91dEV5JX4FgvWH1Yy1kaWWlZuFoHWlZaplr1W0VblVvlXDVchlzWXSddeF3JXhpebF69Xw9fYV+zYAVgV2CqYPxhT2GiYfViSWKcYvBjQ2OXY+tkQGSUZOllPWWSZedmPWaSZuhnPWeTZ+loP2iWaOxpQ2maafFqSGqfavdrT2una/9sV2yvbQhtYG25bhJua27Ebx5veG/RcCtwhnDgcTpxlXHwcktypnMBc11zuHQUdHB0zHUodYV14XY+dpt2+HdWd7N4EXhueMx5KnmJeed6RnqlewR7Y3vCfCF8gXzhfUF9oX4BfmJ+wn8jf4R/5YBHgKiBCoFrgc2CMIKSgvSDV4O6hB2EgITjhUeFq4YOhnKG14c7h5+IBIhpiM6JM4mZif6KZIrKizCLlov8jGOMyo0xjZiN/45mjs6PNo+ekAaQbpDWkT+RqJIRknqS45NNk7aUIJSKlPSVX5XJljSWn5cKl3WX4JhMmLiZJJmQmfyaaJrVm0Kbr5wcnImc951kndKeQJ6unx2fi5/6oGmg2KFHobaiJqKWowajdqPmpFakx6U4pammGqaLpv2nbqfgqFKoxKk3qamqHKqPqwKrdavprFys0K1ErbiuLa6hrxavi7AAsHWw6rFgsdayS7LCszizrrQltJy1E7WKtgG2ebbwt2i34LhZuNG5SrnCuju6tbsuu6e8IbybvRW9j74KvoS+/796v/XAcMDswWfB48JfwtvDWMPUxFHEzsVLxcjGRsbDx0HHv8g9yLzJOsm5yjjKt8s2y7bMNcy1zTXNtc42zrbPN8+40DnQutE80b7SP9LB00TTxtRJ1MvVTtXR1lXW2Ndc1+DYZNjo2WzZ8dp22vvbgNwF3IrdEN2W3hzeot8p36/gNuC94UThzOJT4tvjY+Pr5HPk/OWE5g3mlucf56noMui86Ubp0Opb6uXrcOv77IbtEe2c7ijutO9A78zwWPDl8XLx//KM8xnzp/Q09ML1UPXe9m32+/eK+Bn4qPk4+cf6V/rn+3f8B/yY/Sn9uv5L/tz/bf//cGFyYQAAAAAAAwAAAAJmZgAA8qcAAA1ZAAAT0AAAClt2Y2d0AAAAAAAAAAEAAQAAAAAAAAABAAAAAQAAAAAAAAABAAAAAQAAAAAAAAABAABuZGluAAAAAAAAADYAAKdAAABVgAAATMAAAJ7AAAAlgAAADMAAAFAAAABUQAACMzMAAjMzAAIzMwAAAAAAAAAAc2YzMgAAAAAAAQxyAAAF+P//8x0AAAe6AAD9cv//+53///2kAAAD2QAAwHFtbW9kAAAAAAAABhAAAKAqAAAAAM88GYAAAAAAAAAAAAAAAAAAAAAAdmNncAAAAAAAAwAAAAJmZgADAAAAAmZmAAMAAAACZmYAAAACMzM0AAAAAAIzMzQAAAAAAjMzNAD/wAARCANcBDQDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9sAQwACAgICAgIDAgIDBAMDAwQFBAQEBAUHBQUFBQUHCAcHBwcHBwgICAgICAgICgoKCgoKCwsLCwsNDQ0NDQ0NDQ0N/9sAQwECAgIDAwMGAwMGDQkHCQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0N/90ABABE/9oADAMBAAIRAxEAPwD9/KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD/9D9/KKKKACiiigAooooAKKK8r+JvibXfDq6b/Yc0cTXDSh1aEStJsC4VQWGDzz1qoxcnZEzmoR5meqUV80z+PPHdtCjXF/BE7N82bVCFB5A+/yR3OQKn0/xt49vEMpvoNnBBW1U5U/8CpTXJD2j2MI4qnKXKtz6Por57bxp40RmV72JTgHabVdwHfgE/wD1qlj8aeLZTuTUISvTi3UnPp1GPyrh+v0TrUG9j3+ivBpfGHi1FJW+jBXlibVTj2A3Ak14F40/aI+I/hy+exsmtJXO/wAtXs2dht7ttYAAd67qS9pB1I7I5pYiCfKz72or8iZP20/jojXTlNGEdu6qM2Eg3hiACM3HYZ+tS2P7Z3x2vHJ2aJsTcrEWb5LqcDB87GDXEsdRbtc6ZRaV2frjRX5i6V+1L8bb3Z57aR83eOybH4Zlr2bw/wDGb4lataC5uLuxTPHFptwfTlzk+1elWoTp0fby+E5414ytbqfalFfKP/CzfiEAim8tC5zuX7KF49vn/rioz8UviEygxXVmfXdbgY9x8/OK8r+0qO1zuhhaktj6yor5OHxU8fiMj7Rbs68kiz4I9hv5/Oom+LfxGUjyIIroHq0dvtVR3ZixGAPpVfX6RpPA1Yq7Praivinxb8dvH/h62V4Gs2lYEkPb5X9JAa82X9qf4puyhItNIYE/8ezcY6/8tK9Ohh51YqcNjy3iaafKfo/RXwLb/tJfEOQKXNgfl+YLbN1PQf6ylk/aP+JESZkXTwxJABgIxjuf3ma6I5dWlorDjiIPRH3zRX51D9qD4pTNtt49NyW2jdbsOv8A20rKtf2v/GN1rsnhqC80mfUYh88MNs749TnzOlOrl1Snb2jSv3ZftIn6VUV+d0v7TfxQUskX9mOy9f8ARWAz+MtULj9qT4swIz+Xph2DJH2Zsn6Dzap5XXW9vvE60EfpBRXwBZftGfFMvbLqUenxNcosiolsSyq3TP7zFdBN8ffiCs3kq1gu1WLl7c8Y6AYfqazll9ZJPuRLFU1qfb9FfAl3+0r4/tVVc2LSSMFRRbNkk9sbyahsP2lfiRcX/wBjuRp8WeB/ozFs+mPM61X9nVbX0+8f1iHc/QGiviS4/aC8awIzB7Nigy3+jHA9vv8AWuBv/wBqn4kWkJm26cPmKgG1ZicdOBLWDws1uZ/XaR+jNFfm/B+1h8SbhEEEOnSSEhSotmyWPYDzePxrvE+P3xOht/NvbayXIzkQFQp98yc/hx71xyqRi+VmixEGro+5KK/LHx1+2f8AFjw5Y3UukWWkXNzDjZHNEyryerN5qgD3JFciP2+viXp+gWl/rttpq3t2TtS20y9ktyo4ys43RSDPGY3Ye9elgMrx2OcvqVCdRR3cYSkl5NpOzCWJpRhzykl81f7j9fKK/FK4/wCCj/xPtFVXs9KnlO7cItNu1Cc/KD5jrk45NWf+Hi/xXCtKdIs/LP8Aq2/sy4+b/wAi44rtXDGc7PCVF6wkvzQfWqNr8y+8/aSivxaH/BRD4yPJFEmiWQMgJXdp8qlh0yFM4OM55OBxWoP+CgfxhwoGh20jscbU0+QnPpk3AHSsXkePUuSVKz83FW9btW+divbQtdM/ZGivxzi/b++NEkrKnhhZQvVUsMFee5+1EUD9vX4+ssrx+ELZ1Vgq7oki6+zXWTj2Favh/GpXlyJedWil97qIn6zT6X+5/wCR+xlFfj/Z/t2/Hi7fyx4UskbOMt5KqD9TdZP4Cuvg/bM+OkkcbHwnZuZF3ZWW3C4HUk/aOB6ZqXkWIW86X/g+h/8ALBPFQXR/c/8AI/VGivyul/bF/aI80m28F6O8BGVMmpIkjf8AAUWQD/vo1Cn7Xf7T0v8AzKHh2BWOQ0moF9ijqWCpk8f/AKq2XDmJauqtH/wow9/u9rf5bk/XKfVP/wABl/kfqvRX5Pt+2H+0fE5E2j+FMEgKokutxz0/5ZnqOnSo779sn9oy1LTNo/hO3gGeZZLpm9OoVepB7VzrJ5/arUl/3Gp/pJl/WI9E/uf+R+slFfkof2yP2kJWSKHTvB6M+PmxeSBc89MrnA96jk/bD/aTjQP5fg4gnbxZ3p5+vnV1w4f5ld4qiv8AuIn/AOk3RjLH01un9x+t9FfklH+2D+0ayb5f+EURi20Kmn3b8/8AgUD+lb0X7UH7Rl7Am2+8LWzS7fmGkXTlMn0N4AelP+waSdpYykvnP9Kb/An+0afRM/U+ivyitP2nf2hL7UrjSbTxL4YlubbmSMaDNlRx632DyR0Jxnmte++M37RYYPcePNMtZ3OPs9p4fiMaL2/107vubrjcfwoWS4Hl5v7Ro28lWf5UWdGIq1cPNU69GcZNJpSVm01dNXa0a1T6rU/UaivyoT4v/tO3DlLfx7YkBuW/sC24X3G89a3G/aJ/aR0pFhGp+E9XkUgMbnTLmyJwOTujuZF59Qvfp2rNZRg5Plp4+k5drVo/jOlGP4mX1xWvyu3yf5M/Tuivyquf2x/2hrGZUm8K6BdxDO+SzunByOAFScR5J4/iq5b/ALbnxWt42OveDbiz2LlpIrQXKFuMBRDcOW4POPpV/wCq+OavScJ/4atKT/8AAVNy/ASzCi+/3M/Umivyqj/b91ONtuotY2JLBQLrT7u3+Y9i0uxc/j+NbEP7b3iO6mK2lz4enVD84ikDso98TdT+NY4nhvNsPH2mIw1SMe7hJL72rAsxoN2Uj9PaK/MdP2xviZIskwtNJWPaWiXyZCzemcSYAqgv7afxNMJX7Jo/nFhhjFII1XGTn94STXhyko7s1WKg3ZH6j0V+Vk37bfxKjKIsWiM7DIAt5iSPUDzM4q9bftmfFSQB5rPSEVvujyJd7H2XzT+ZxWSrwbsmW60Urv8AI/UWivy0n/bS+Kgunt4LDSdsaguzwyDk+3m5p6/tm/FYxiZ7PR1jP8RhkGfp+95q/aRF9Yha5+pFFfmPaftffFq6YE2Wjwx9ctFIWI9cCTA/M1qyftZ/FBQAlnpbsxwv7iQZ/DzKtakPF0l1P0jor4s8F/Gz4r+IUM2pW+nQJn5RHA+7HrzIa9B0/wCJXjO4u3gne02htq7IDknuTlzwK6/qdS1w+t0+59JUV46PGutCJpDIjBBknysD6Dk5qCTxzr0SF3eLgDIEWcE9MnNctnezF9cpWvc9por5B8YfHbxhockdnpkFpLcPg7pkO0g+iq2f1p+ifGrx3qBdLsaerpAZmEdvIQADg/Nu29egzmumpg6sIc7WhaxMLXPruivhKy/aW8f6rr8uhaXp1tM0HMkxtpPLRfVmD4qTVP2k/HelT/Z5rWwYj+LyXUc9Or5p08FUm3GNroFiYN2PumiviyH9obxrLbLMLaxLMOgjb/4uq0X7QXxGk8uWSDSooHfbuKOTj14kpwwNWbsiY4qnJ2R9uUV8nr8c/EFxcRJaSWLw4/euYm4I6gYfH50/Uvjzq1qyJaxwzNIPk/dH5j/31wK0WWV9rF+3ifVtFfIeg/HvxLqryrMLFDFnIEbDGPUlsVBe/tBeJIC4to7KXYSM+WxGR0/iFH9mV72aD28b2PsOivhm2/aO+IM+ZZbXS4YgActHIW57AB+avW/7QvjucKFg04s24keVIMAdOslX/ZGJ7fiV7WJ9sUV8RTftEfECNlC2WnsWBKgxuucd87+ldj4c+Oettpk194tksIHALRJaRvyB0B3scn6VzYjBVqMoxkr37aidaC3Z9WUV8RWn7Sfiq9nk8uKxjhViFLROWI7cCTrVbUP2lfGlk5zBp5jH8XlP/wDHK6FlOItewKrHc+5qK+Erb9pvxrdljFb6eEUD5jG/U/8AbSu30f42+M9VK4TTwOMkI2Dn0+esfqNXqiPrVPqfW1FfOEfxW8RyXf2RDas4UOy+Uw2pnG4ncRjrWf4p+N+raDHDHZwpd3MzbNqwOV34zgYOcDHLHApfUqt7BHFQk7I+n6K+DLv9qDxrAoSK2055DnOY3A9sDzOaz7f9qfx/cLvjs9NZQ+wkRycNjof3h5rd5VXT5Xb7y/bQvY/QOivkGD49eLBpX2u6hs/PYAIqRsFLHr1cnFcxdftK+NbWUQy2+nK4zuHlyH+T+lKGV15Oyt94lXgz7lor8/8AUf2qPHUM4jsrTTWHQh45Mk+2JBQn7UfxAMe5rfSi56KsUmT/AOP0LK67dkvxGq0T9AKK8F+BfxP1z4l2WrT65HbRvYSwxoLZWUHzAxOdzN6V7fPf2NrIsVzcRRO/3VkdVZu3AJBPNcNSm4ScZbmkWmrot0UUVAwooooAKKKKACiiigAooooAKKKq3F7ZWhUXdxFCX+75jhM/TJGaALVFAIIyOQaKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP/R/fyiiigAooooAKKKKACvJPidBJNdaOI0VuZwxYkEIfL3bSATu9Bxn1r1uvOPHYzdaaR1Cz4/8crKvUdOm5roTOHOuVnlcumma4xLChgjAIyc5IPAxj+tbsFuqAAKAvGAvA49hSIpVAepOSe555qXvtxgdPpXh1cZUqLl6Cp4SENepDLbJKSCoCjq3f8AA1kyweW7KY3EakAtt5cexHJHua6FQJEA5GOnqaYFUhvM4A5yeBXK30O2Cer6HPSlvs7t1UKSmRtx1wW+np1r5H+IsVyJnmRpAHDfMOPlYEE5xxz+NfZd1HCYXeAhwwJwGJXn6HvXzZ4z0m6mtVF/Ktxc3G/zFij8tIVB+VBk5JA619LgP90nG2v9f1qeFimvbX6Hw3rWkIgMEQLsw3q2SSW3E8DrjAzg9fU10uiaRsCnbtUx5xnoM8Y68nrXTarphN1FvHzNOyDduLOI1OTzwAD+Yrc0PSZpNYskmj8m0IKSoB8w9Pw4J/HFfLy30PpoU+amluek+BdDsGDS3cQdT8saE857kmvpnw34fsYbPYkWDnqCBj9DXjPhqKNvmAGHJwSOCAentXvOjTtDCsDKAFAK5PTPau6OaVfYPDvVHC8sTq86dvIbdaJEiHKndkHHVT9QKyrvREdX8pRG2eRubHP649xXfLtkAZh1qldwLKTHgbWwPr68e9cEd9D2KMGmrI8wk0m8DmNVVFyGVhkkZGCAScfmKv2dtLF5mydlYcSIo2kj14ru009ECpGNsYACgdsVm6lpMLRtNKdu0H7rMAw9CMgGtYL2k1FGOPxCjTZ8s/EaUyTXDs2FXCrzjkc89s15Bplu9025zznaqg5Y5/pXo/jmeXVtWNlZxO6xBmIUHGBySfQYrm/D9v8AZZzcONoK/LnBPPHFfq2Fw3JRUX0R8nGF1eW5vwwWtvCECbpFAG3PCknkn1NU7wI+7aPdto9fc1qLst12R/NJv+Yk8bj3PaqESRz3k0Th3SJDI4UEgZ4GWAxgn3quRLW41C2pyYItpnWQZZlOB1IDDAPpVv4OfDT4WeAb3WfF/jGQXOrXb+bEXeQSLjkKqAhT6c5q3eCSVXit1CBmHmBTgYXpk45+g6Vh6rLYtBHHDDgwAh5d5fe7dSS3twAKwzHLoYtR9r07aHTSr1KV3DqQarq8N7qdxfWUZhhmlZo4yM4BPA71RuL2eFmkeUCVOQmOB9c8fhVF/nmViSFXoMDGfyqtIiSgsZMksAAM5P8ASuqbaVjmk7I7HQNSvr29e+1CUyyuuxGboo7AdgKuf23LHcvCWLshPK9T+J9K4m0urp79NNsmGYFaSSMJljxwS+eAPTHNOEsqSu5PzH3/ADrnqNONo+hlUS5bJnU3GoDz9wdUeMCQAtlx7+1Q6Jds2rNdSOXkPIAx3/rWJJet5TTMPKhkcIxwm6UqPXO7A9+KZpd0/wBoLiFVTH3pGOT9AAa8h4qUbxkzl97ZHf6pqTEMVYYZRkDp6EnbXnOsSF28sEYycHn+RrN8RfEDw9pE5tLy8U3YwqWcEbPOzHkBYlBdvrjHqa5P7N4z8TOjw2y+G9PkJJnucXOozZ9Is+VF/wADLEelexl2T4vEUliKrVOk9pzfKmv7qs5Tt15Iya62M6k+V8vXsd7put6P4Ws21HW723soy4VHnO0ZPOEABZ2PYAGoJfG3jfxC10/hmwdIGYCPUtXia1t0j7eTbZM0pPXc5jU/SsLRLHwV4K1uG4vpXutXlA23l2zXVygc7ch8FYVJOPlCivS9Vu4jE00s+0IC7s3P0yTwK5sfXybCTbwMPb1I7ubtGL8qad36zlZremer9RxlClTqYmm4QqK8W07SS0dm1qvT7zx4+GNKtb8ax4vnfxDqKguGvQot4yP+edsq+WD6ZDEetcd418R6lqVws95MzKihIY5HJ2KOAAMEKB2ArpvEOo2kQlcy8uCUjXdznnJOcc+uMV4f4hW4u3TbdCBmIVd67gM9lXKk8d6+WzriXH5iowxNS6WyVlGPpFJRivJJLyN8HgacZXSGG/We8WSaCN8OAsZfnnks+P69Kl1nWbS7nRoWRdgwoX/Vr6le7H3PFYF5H83kPdeXFvDblDYcdzs4J6cdqSxsJdRuGjsf9HErgyXbZZxGpHReFBPQDnHevm9X7vc9RQivfb0X9f11OksYSpM53ECIzNLKu7L4O3BJ5x2+X6Vr+HW1HTNP/tbVZ45ft/nfZV+QNujOPnXO9Bzxk84NY0Go2P8AbclhEs1zHE6Kz5ZQvOFB5xyRzXazyPbpcXOj2yS3ojUAgBiGJxuxtwxA+6OfWuR1LtyhL4d7Lf8Az2a0a166Wf3eAyWOFSwma4dOeJUVSm5pRg31lyt8rXNCTUk2o6cl5JrK0FNU0zzbKNEubqcG7eW4nWOFI0yXCjgHpxnn867e3YXiKEV43kI3SY2qM8tzzmsjTNEubvQhL4hhiMzSsym4U+YVOMHb/Dnn0/rXX2dubaKN5VhZYxtA+Z8HjhQGxn9K0wWHrKPPNuz7/wBf53I49zHLJ1lhaGHhDEU3yzlSuqcrJK8U297JtcsXGV73bbVu3iuxZKyxyx2hlKxv1DY6t0z+PFdZpMBCrHDGixqoXAGxcdhwB/8AXrGeO4dQ3nGMLgAFNyr653E5/Ku60iKE24Zwjv1Gdoz2zjGAByT9OBXoSpqySZ+dRm7u49I5Rbsz3KI33AoOOpxgAZz9TWLJBeSJiYxSKwIUJIwLHOSzAYJz0xW3exFhGIJZc7TtciOMN26FT8ufxNcrez3dnEJrqYlsttwxVCT0yIz0HuCSTmm6ajuhxnfRMjmbUGkNsixK8f3nQGNF3diSd3Qd65afxXow8QjQTPG0yFIWbLSIjngDdgjJJwOQM9xVhdRZN0zQJKVYYZgWjU+oBzk/WuDi0LRdE03WLq8t0FxqLqwvpZ598URcswS32GMuc4DbhjggZrjxmKnFJ0+l9/y6Wv36WPteC8kyvH1pUcyk024xioySfvNqU17snNx921KK5p82mzR389ygJVbgyE5TKoFQEtkqvz84XAyAO/NUJ5be6xGiM0jkYCNg4BAOOMgAZ+vrzxlW2qJeW8bQXHmpPnDqdoVCcbdvBJOOp6ema34/sVvEZvI3TtwgYnOAOrHPA9q9HD4lNXg1b+vU+Kx2Bq4erKhiIOM4tppqzTWjTTs011TL8EDNGAiFA3ygKCxABwTnufToK7yxKIiAx7Y4lwqHAzgYGa4bT3nLn5fOJAVeNsagenU10CW7+cVlAC5ADZ3c+wI7V9Hha6lG0Vc8GrBp6nX6bpVhbahLqdhaxi/u1G+RSC5Jx2JwM4BOMdBmrF1NZRL+8kjV3YklXG/GRgZ96zpJQLV0RlA3DczDLHPXke3asa4m3gR26Ll1+VmO0AevTms1UjGPLGK+7/I6MRia+ImqmInKTskm23olZK76JKyXRbHWLe24d3hlSCALnG7BY9hnv9Mc1l3d4k2YzNC54JXO9h6kgE4zWOs0hkU5kfHAwuDgcH5h90H161SuGAQ7Aplcj5tgITgnOW5PHc4rw68nCeiO6jFShqxl1I8Dq8zEs/McW1t2DyOvTj2qpf6xJGscSTOSzIDsBGSewIXt9azZop1xL54kU8b2JkLH+I4GeOwq3aSh7qJ7hkVxyvmHdhR3A6Z/Kr9s5Llen9epHslF3WpsC8kgtWCQOV+7ksWLZxj72Pl+nWvCL230W41K8uNRh0x54rxYY7L+z0kkkhbG6RpdvBA6fN1GMV6/rusG5DW0MpjyrYYKdvIwcY7+5rw+20h7Z4RJFHam2DeZOXLPdMx+U7P5Bs/lXHVzTH4apTWCqSjZ6uLcf/SWvXXTyZ+l8E0smp4HH4rMlCU+S0IyUHdtN3XOm3dpQfs1zrmUuaEU201Dw74TaSQWMEmm7mAaS1uJYFRRyTtRwufqK5yGztltRNp/iHU2Cs6nzJY5U2joSJEJP69utXtQeW6l2LOzhCeOWAY8cj5Qcc9Ka7mMpa2775N24NgFyOw24IUfrX0NTjjPJv8Af4iVRdqn7xf+Az5l+B+fU8uoRVkrPy0/Hcfaw+Lo5RJDrdncyEF1t7q2VdqerGExnP14rq7DWPGVuAbqw06/n5Ia3vJYBg9wJISv6496xrWW985oZ7iF5QRuCxHAAHRjkjOc5wPwrqdP1CaWY2qXHlrGu5hGoJkPsCucD3/KnDi6b0xOGoz/AO4UYf8Apr2YVMvT+GT+9/qmZOqeIda+zSW0/hm9gFwrZljlhujg99odWY+nFT6Brmk6bZwx6vHqGnqnz4vbC4RQM9tilAD7E11VnHePIzLG7M/dlw2O2c4rt9PF2+15S6x/cRB1bHvwBXpYbMskxFRVMVgOWSVv3dSUdP8AuJ7UxrY/MKWBlltOt+5clNxsviSaT6PZtdjM0bxh4LvZkEOt6ZvZgER50hbJ4+7IVOa+mfCXg+0v54bmRornYw4jYOo784OK4O20PRb2GGPU9Lsb1QdzrcwpPg46gMpG7+VbVp8Pfhcri4Hhi2srl84ksFezJP8AeJt2Tkete7Ktw8oc6lVpv0hU/G9L8jwowqt2Vm/69T6cjuLTT2jtbOLyw7qhwhbgDngA4HueKyJ/EBgvEigTLuCoJAwOffH6V81x+NPEHwqI0TXbuW+8MXEhj0/W7lmeWykc/LbXjnJZM8JKfo3rW3ZXV9c3SXdzdCWRwXZ1OcKx4xjqD2xWWNy6pg7VU+elP4JraS/NSW0ovWL8mm6hO61Wp9VWviGOHTmLzKWAwOflH+Jrlb7xPB9nNw07JsyTjPU+/HNcbFNMlupLjylHMj+voARyfxrhdevXLYi3Nn5VAzksevHrXiYOrTqSaaNZwtpIyNe1Nta12OOFHZnbCHq2M9+36107eJ7vSLJNIViM5BAHBI9fXH5Vi3MP9jrb3MqBbopuGTv2k+vGM1yYu/tdw01yS2Tlj3OO3tXtKb5FrdGvM+XyOj0nxVcaTdyyQTypBMCHiijVyzn1LYAGe/aufvGn1S48+c7vNl6E7iT9OlY0t6ZkkjiIUGTanHQd+f8A61a+nkmBIySuBuMr4Xp/dXr+JrnnWtLmZjKo73OwsJ7dYljnjVjExJDZHbjdjH5VHPqkctqjvIm1HMaIg/M/Sua+0xQ73+/5h7k/MfpVptK1W+jg+xRGWdztjQds9/oPU1nO8pc9PcUnd+6dIrSvY7mnSPY+5Yl9O2QOpPvVTVNSLQxRW0jIw4Yrx17V2N14JufDHh8y6g6Ncy4eTByAcdN3c/pXk7TrBMXdjK7HGwHgfU9AKrCY2rKHNUVrM6PaOHn5nRWZOnadLIwPmT52gnoFPJPpVLTrmW5mWBS0ssz8nGQeOldlZ6JqGqaV5scACohMkocYC/jj8h1qHTIdM0BlkuZC9wxyoUck9sHtivUo4lV6ba3N4T543G6howhm+yBDIUUMyqSPmPQHHp6VdfR9TRS6iKDgK4UfMenAwDWtpTWN2w1DUWPkB2P2cAgyFTkbmGTj1rjvFPiKeW5l+zoLVWOFWM4GB6f/AF60pzk5cj6FRk78rM3WrprZzGZfNb7pJYn+lc3JcyXOVEjnjkA8AenPT8Ky/NmuJP37k5OMnk1PFJDBNHFcTrAHYIpk/iZjwABySewHNVUtNaaWG/e0RqafLOZFtooxs3k7kUF9xGPvc8V2uo6DHHHDLexEW8owrZYsdvUkeme9W4Ne8O+FLRLu7XznYgAqCqn356c+tani7xNBPpFqLFXiM43ZPOQedoJrnjJ39izFSbfIznv7C0l0ji0oFbhj/rPM+Tnrxg16no2mSaZZK93NmLozttjLkdTyMgdsjNeM6Z4keylUMofHUZwB2HQVt6746ur0JZWduqkEIAo7+rMeeKJ0pr3W7oJQlt0PXrrxJpllHIkISONsAk9ZGAPTPzMq+vArxzxL4sS+jWCzZlUqSOCA2eASepHtmuZm1C10vT7m71Ty5bi72RLKHYFAMnag9TnkgVyM/iD7XJuKi5IBEUUhLLGmO/Izj6damMadJ26glGDJ7maSWXZkbuedoX9B0H51u2l20Vta2JeFra3fz5fJjClpGBzzjLYHc9K4hbmTzQwXJbuvH4KOprpngXT7SVZ3b7TJMoQMQUVF+8OPfrWsa0ZSTe6LU03c7C51yz0/Qv3hle+uJvNEkr5VImwqJGg7n9B7V5vc6obidYy5DtuAyMk45/Srt4xubllDb1LbVPT5f6CpbTTIISLqaVRJv27ETJEeMEZPHNYVKFSbvSMp05P4ChaRyTkynIVDhTjknueaguXWB3iU4MZwx+nvzXQ3EsaOi2+FTdlBj+Ltn155rIu4GkYkMSG59CSep9qIxqQ90UYzjofZ37HpB03xOwP/AC82vGenyP2r8zv+Cpl1cw/tf/AuOGaSNHjstyqxUN/xNB1A61+m/wCyHEYtN8SgrtzcWv8A6A9fmF/wVR/5PD+BH/XOy/8ATotfN41NYiz7/oethlak0+36n9Alch488feDvhj4U1Dxv491a20XQ9Lj826vLptsaL0A7lmYkBVUFmJAAJrr6/Dj/gth4h1y38FfDPwnayP/AGXqerXlzdQK21Z5rWONYQxzjA81yAeM89q5ZX6GsUup9S+Gf+CrX7HniXxNB4b/ALd1PS0uZTDFqWpac9vYFgcAtLlmRW7F1UDPzYr748SeOPCHhDwjd+PfEur2mn+HrG1+2z6lNKotlt9u4SBwSGDAjbjO7IxnNfhV8WPCf7R3xd/Zys/gfov7JNpoNla2ln/Y2r22sWDy2ckexjPGAsbFplB8zL5fcdxJrjf2sk+OPw6/4Jo/DT4cfFSzutH1aPxENJ1KCWVJHaxtftEtmjtEzqVwqYG7ogzVzsovvdf5EwV2j9HPCn/BU39kDxb4qHhW38Qahp/mSPFDqOo2D21hK652gTMSV34+UyKg9cV9F/s+/tR/Cf8AaZ0vWtZ+F1zeTWugXCWt697bNa7ZJAzDbuJ3DCnJr5w+H3wH+CF1/wAE/tL8OTaFpU+k6j4Kj1a7umgi8xr+W086S5MuN3nRykhXzldoAwBivzC/YO8S6/4Q/YS/aQ8Q+GDImpWlupgkiOHiLWsymRSOhQEt+FEly8/91fqKD5+S32n+h+o/xE/4Kifsk/DnxbeeDbvXNQ1q609zFd3Gi2JvLSKRTtZPO3IrlT1KbgOmc19gfDD4y/Db4zeCI/iH8Ndbg1zRJFbdNBkPE6LuaOWNgHjkUHlWAP4V/Pp+wB4g+MHh34I63H8Pf2cLL4o2OvaldWuo6/calaW7zII482bx3COxRN27rtYv6ivrr/gnH8Evj98FvF/xUT4heBrnwX4R8S2sl/p1nJeQ3UNvcJI2yBPKkYnZFIy7ioyFotuvK42+q7n0+f8Agpr+yXHoOu69deIL22/sG8/s97KWxcXt1c5cFbaEEmQLsO5uFXjJGa9H/Z3/AG4P2fv2ndUvPD/w11e5TWbNDM2m6nbm0upIV+9JECzK6r32tkdSMV+Uf/BJf4feD/Evxx+LnivxBpVpqOoaJcvHp8l1Cs32Y3F1LveMOCFchMbhzgmrngDQdH8Ff8FhtS0fwpaQ6XYzC4la3tkEcW64sN8mFUADcxJOB1OaqlHncYrqiJy5YSk+jP1c/aH/AG0vgD+zFcWmm/E3Wpf7WvlEkOl6bAbu88onHmOgKhEz0LMM9s1+Ln/BRL9qH4U/tGj4SeIvhFrslwLTVJor+ylVrW9tWZ4tomhJyAwHDAlT6123wg8OaH8Wf+Csvjdfidax6wNHmvZrC0v186EPaQIIMRvlcIPnUYxnnFTf8Fe/h54H8OfE34WeL9A0yz07WNYuWhv3tYlia5SCWLy3kCgBimSATzg4rKS92Mn11OiL96UV0P3/ANA/5AWnf9ekH/oC1rVk6B/yAtN/69IP/QFrWq2ZBRRRSAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD//S/fyiiigAooooAKKKKACvOvHX+vsDjos//slei15v492mbTwx2/LPznGB8mawxP8ADZMr20OLLqvJOc/iTj061HGwYmWQE8jZ6YPT8ahilgdVuIXWb+66sGBHoCOvSsC+1AW7tPO+Io2JyWGBtGOAOvP6jArgw2DdXRHNXxHs3Y6wuzIWRgoBxyM5rwr46aT4r8Q6fp2keG9Tl02KWcG6lhHzbcgdsdP612//AAk9s8QEW4An5VOck89Rz0NQHXnmOxUSYKQrFznnjv25rrWW1ad5Q0episdFtKorrqN8F+GrjwxbPaC8mvYFjBH2g5Kso4YH39Kx9ctmv7aW4kDGNchcjqe59MZruPtzXcKLcxrGG+ZYlOAQO7nuM9hXA+KL24FuBIUWPcQADgfLzk46fSurLMPLllHuPNsRTr1lKjGyseDano0E2prdnG2Bi4iXgGQDAB9SvXmlsrIwTpNjzEyfNYdFZ8ANj0XuR3q9eaxYIJo1uI0VsCRiV3kk5IHXGeM962NFa2v7wpbqzrIoQhgQp556/nXk4vKasJN20O3C5mlFQl0Oy0KxJBWL94sbcnHJz1/lXqNrI6qrAjcqjIwTkd/euf0HTWtbYQttZzKWDYwQuOAfeu1isUP7wZ+98rds9x0rx+S257VKvF77l6FhuDKSgPO09/8ACtKJFZ9x+92GQcD+lVYE/djLAqeNyDpjt3rQQKi53HAHJ46VbvsjoniY8ujFKrGBLJ0XmvIviN4kn0/SHICpJKrCPceR2zt9+2a7fXPEkOmWtxPKVjEKfKrEbmI9uw+tfGnizxRe65fSXEzu8Zc7MKMD6DdwK+v4dyhuXtqi2/qx8zjMS8ROy+FGTdxpFaMdrPc3pH7wnOzuQB/MnFSI6oUaEDZb8DI5ZiOcnkYrBuJb6W2F35Uq28bpF5hwFd2ySEwctgdTgAVuwWktzMtqw2wxruHBAJ6/nX3EasLWuYXS0N0ALbxy+ahJUeY+OAzdgematWkKWtrLIxcrKu3kkDcPxGcevSqdlaafqzoL60F9Z2EyzCNn8uFpIzkA7cFsHsc0/wATf2hIJLsmKHc/+rVs4DdlUDoPrXKk3UcUtO9/wIsraMwrm31WaK8ls4Vt7SxhDvO0ijeW/hVQck15fcXcmCA2SSSQo59ua7W8isILuLVdTszeNEjJFC8hRdxH3io+9j0rgEu44knlnwB1OeAoHOFH/wCusZTqJtVNuhlKT2ehNp1hfXqS3k3m7EHEa9Pbtk/nWD9rkN61oFI2MVODjkfSuggvzc6TNehikbECJSrAuf4iewA7dzWJp62Fuz3t3IYVJMjSTEKiLjtnAUe5/OuZrncYUW3f+tDCaWkYs6LTNXvtJjuIbPaJLlTHIwRS230DEFh+FJo+ja06ajq+tTW9np1sp8syyASO3svWuDHjGwubtx4Rgm1+ckrviUxWcZHd7lxtI9ow5rlNT0XU/F4ubPXtfzKOunae2y3Xn7shJ82Udjyv0r262RVMJFTzOqqPaL1qS8lT0eu653CL/mOnLcNPEVEkn7NNc0km4wi2lzSaTsvOz9Hsdt/wn/hhJjaaTG+t32Di105fPbPbe4/dxj1LMKqajJ4z1lkm1S7j8P2khANnpp827Yf3XuWAVP8Atmv41q+DfDUPh2ffFaW1vEsaotvAGEZKjl5Om5z3JrQvf31/GJc/K25VK5Ge3FVRzylSoJ4HDKM/5qiUpeqjbkhfdK0pR6TNc7wVCjiZUsPVU4aaru0m1ey5uV3jzJJStdJJnL6roN14YXSdJ8FaSLjVNalJB/1spPUmWYnfI3chmIrsbG+upoGt9USEXlpcNby+QzNHviOGIGSBz15q74il0YWsFvrc8UatygmYD5+xXpj8DWPJb29nALexgSNGbIdRjj29v518BjY46tmNTF16zqPrzScpdLXvfz1+WyPosVjcBHh2jhHhHCq22qnKkpWcuZqe8tHGLhbli48125MpavZ6df3C3048yYAIdjmNWVDuCsAcOA3IyOKg1DUWkhTzUCqvIG3dub1yRziq97Nb2cDIFDStnLFjuI9B838q43W9Tks9Mm1K4j+QDYkQYZ/PORn0rzK9WFNSlZJ7v/gs8qlUx+YOhg3OVRL3acW27czWkVeyu7aJD9QDsjOEbLdWIC8/QDmvK9Ut7m5fbC7xlmPmMCWkYdwMgbR06V1+najd3tj9sv7Z4nuUL2u9SQ6KcHaTzx+HtWY9vHHLNPMzs7QqqIG2xrzk4AyST36fjXkKpCtHmienmGWYrLK/sMUkpWTVmpJp9U4txa6aPRprdWONXTJIZIUSWEByzytyCQo4HGSeT3xV2O0CWaw7fK5MkkhclQM4UYHfvgD3NbkS2kKB7qNy4U7FKl8bjgHgcD3PU1omwhfEEqcsA7KcnJPQY7CqpUVNtRaujLF0MXQpU8RXpyjCd+VtWUrb2eztdfeiG0i0+1KW1vgMrKWkI+Zmx2Bzjjuea33u57W48lHhhjghWVTLvDXDscGOILj5hnnrj6VJpGkQrdSTGPdJIxJAY7U3HA65OT3P6V6dbadDFDCZYwwPAVAcAAEknPXgZJ4AFbzyqpKD5Go+a/pf15XPQyniulRxkKmZ03iYxjyxjKW2qso8ymkrXVuXS7cbSSazdG0OO/uftUlkzSYRkDdgfdjwPc10999i0y2a/wBTP+iWeZZfLUKXC/wg57ngU2w1nT10W91fTEXUBaHc6RZJJ7D/AHRkfMAeASKu2N1Dr+iFtRhjgjujJCy7j5bgnblGYKSrDoePavQoulf2dGScnFtPo+mvTc4nkOOopY/MqEo0IVY05raabXM4qMnzJuGzattqZWha7F4ivoTdabJYpdRtNYl28xXjQ4PYbSpIzxjnINegyal4chu08Kwyg6i8fmuoUj+EHBbkZ284JzjnGKqWWk6fpM9vctd3V5NHELeE3U5mMMIyfKi3fcTPJx+dc+ttrM/jafVL6yhhswpWKeNE3yKqqFwwbeS3zB8jgAAGuWrSxNOnThNKUnLtsvO1l+H+Z7saHDuPxWMr4WTp0qdByiubk5qqaSUVUlUk073ceZybTaaVkaOrTx2b+crsekahVLJkcABV7/hiuCv9UCSNN50izZ+XeAwAAPACghMnv1roNb80SfugxdeBg7QGb0znp+Neea/pOstd2/2B5SqI4/deWN0+RjfuxmMAnOBnNTj41KUOaEW7dFdnz/DGXUs0xscJUxEKXMm+ao+WKsm7N+drfkP+3H7Qj36yR+Xh1S3Z2Vic4BY4HUcg81DdST6vbSLMJjbSDaocOckkfdAztAxwxIrfg8OeTIiXO1i+N3ygqB/ugZyfrWjcs6Rj+zM7m4+fEhVRwOw29/XFcVbDz2qLcjC472U41cPK0otNNO1mtU09009UznLGH+yE8i3tygi3MQx3je3QfN95ieSeg7U2O8kuLrZqJQ7gxI/1ZwvXIA2qo+pJNNmjv7mZInYgkZBjU8k8lj1PPvXU6Po8sCxwQyTyjcCx2byduMkZwAP7ozknmqpQkrRjt/XQjF4mVepLEYiXNOTbbbbbb3bbu7mtpUd4Vie0jCxBSQFbcWHfr0/oOK3Ui3zAkZIycBj9MAZ/Ws+11RP+EmXw8/nW24hDM7IPnMfm7GjyXHyDlsFQ3HpXYybIZAyIkoG4BvZR94k46dvftXr5fWUm3B3s7NdmuxyZ1k+LwPsvrdPl9pBTj/ehL4X13t1s/Iy7zULtYFhihDtnapOCB24HJz71kLGHAacFEA+aRj98jg/XJpt9qExdY8CNAT8pBDlSfb1pYnUncVUnaAoIP3Txnb7flXqz1d07+p4fk0X0MbxMIH/d5AOcjP4+1On+zTMVhYJ83zEHqcfxHpgen+NZt9eW1tFtRYtwycuwJBPI3ds+gqTSbUWeiC/v7tDITuCB1Byc+uP0FcGId7K1/wBDqoxervY5/UYpt7vHH5zjdtLfKABxkkis2HS7i6BkubmOMZxgEgDHUKSPzP6VYu9SkEgQNsTOSCA8rY9FHAA9T3qBNbiZwJwoz0VmO4AD0GF5PTn8K46kaD3Z1U5VuhHPBbabCsaTKZHzhRGZCxPTJIAHrXMX1s9vG1zc5JCEB8Dc3HZQcLz3/Suom1BbxJY4nij3D5nDYZFBIADAYzz09a5TW7e1knNwJHQQxEKBLySeAW4IzxnnpXOoR+zqv6/robc8k/eOFvpUjhjtBvt1bCrGu5pGzyccA892JAqi0d19oVLWQWwK7fLi+eVvTe5JCgf3RWgu1l3CYHzO6lnaRjx1AJIFXLa3i8zYud2cEhW+mRwCT6VzqLbsdLmoq5asopF22KXAlkJ+c4A2juT6112Xht2Qeb8+FEgUFmx0AwMD2qCzs0kCwxB441OHYhgWI7dOfc9qs3N3GJlsYZTuBChYomYkn0IPQevFaToOCuzKNdTehPYWN0WVYpCrk5xI+/APc7xjj2r0/Q9LjkdZbqT7SsR+6hABPpwQOv4VkaDpVvJKollfyoxllKkqx7YG7PX3xXpsMNrBDHF5gkbJZo1iQMPQctnFb4WPLLUxxM+ZGhA8scAZAIsk4yOR7Dit+wMyo73GcMfvgfMfYeg9+tYESGRVBVsLnCq6jB7E7TkfQ10VshVk3hnVeTiQSDJ7EMQfyFdtWTcXG+hy042kmSz20ep2D2F55d5bTq0ZhdRtZW4IcZIP44rxqzgu/g5q4GopPf8Ag44CyHEs2kEngP8AxPbe/Jj+le0X19CzCEIpZAcAHZjPc4Y5+teb+J7TWbvTmt/Ct1Ba3Msi+e158weE/fUB1lyD9CCOOK9rIOJHgKU6GIp+1oz+KF9W1s4t/DNX0l8mpRbi+mhlUMdjKdCVWNLmdued1GPnLlTdvRHsN1renS20WoRTm5SZA8Jh+ZHRhkbSpIC/Tk1xl7qbebuI2Z59x9M8j37141cQav8ADLF3oSve+GJyJL2yiQmSykP35bRVBbyCeXjAO0cr6V6FYXdlr1va6hpNxFc2twgeOSNsh8+ny5479MV24/K/q0Y4rBy56E/hlazT/lkrvlmuqu0/ii3HV+VPWTjLdf1939aE+o3sc8Y2sMqMs2DxjsMjrXGC8YiRzu4JGxTnJ+pC/wAq9NvdIMdtunRR8pIAbjn+9XnsoaKSQqASDhQOgPqTU4f2ko+8ZJXuomdPdyWhVpwQ2OI1PTPrjirOkPNezqvlj5juywJU49sZOPrWe0KzThZCdzkd85r2PwD4ctZGkv71TIVbKpI4RQO3QdPp1qatGclvoC6sk07w/cT+XO4yEOd5UAE+gHtXpWjwXVjDJtSCFQQquufMPc72LN+SgAVq3rwWsCCKIAcBVKnAH+fWs22aS5Z2KKF6jHQAfWs6SaprUG2ro5vxhqF+2mObu5WQsSI4kYkhR36CvKfCvhLUvE2twx+U0kCP5j9QigevrXr89pb3k5SaMEMT90EsR69Tiuh0TUv7Mu0s7GC3toQCZXbKkhR25yxNerFQlTcJK7/A2i04W6nTXHhuXT9IaC1ncAr8zOpCgDphScfjjNfOerZs9TILFl3DJxknNe2av40lvrX7LaxGQGRkaWQMo47Jzz9a8c13TbhpRKzKgbLEYJ7VOV4T2LlF9TopOTfvHUwFhZsFzsxksRyx/pivNdWlaS7aBTgsQDxwMV6poaLNpMH73Mhcp9wNzjsOpNef6zCtpqbyMpZlOfmHP1NdtCm3KUQprVo5aW3aAlSDkDLHGMVcnvo9LEBlaSOaYhI/lIY7hx3HXP5U+4ujM7uf3ZDZyKxZPFkejavE9wRcXQZTEsi7yWP15+lViq0aVJ3aXqaTk4rTc7aSZtPaAXkIkMREm1uh74PvVfxv43uvEhilmijtrWzQDA4VT0zxjJ/SotQ1G412/mm1ABrrylJj/hUdgFHr3rndXcuVtQI7mQKjyyLAYo/M7gRsz/KvQZPPXiub2sZ++tZNbmTaa5uo23lWJROz4L/d65wOcge9aiyS3iArlFA+QAjcPrj+dYIiurySe+uZYgiABAfvE9+MYAro/C+h+MdZvotH8NWSXDXSlpZ5GKpHGDycj+tKviHTp+0lsgvNtJHmmtQy3N5FfTwfafsW8wK+4hZGBGQvQkep4qpoOh6hKyW8x8t5SS4BJ4zxk4GcZ6dK991nwhp2h3BtZbgTi3XM80kYVd467CTyM+wrrPD2j6KlvDd3vliKXacFCSw9BkZx9OteZXw0alXnnszCc5xlZng8+jT2Uyq0m8rwXY4X8gcfhW9qcaCGGOEbtqBRuBHIP8q77xVqmh3utSXFvaq8UQCoCQsa7RgYVfTrXL20R1TT31gFPJLmKI4+Viv3seuPWvew9KKiovdnVSgktdyCPT5IpmlYiTaRhugOF/zgVmXsM0t0I0JZn5x2A9617h5WUBCWJAA7A9cnjimtCLW2N9OCplGFHAIBJGMH6V3JRjob7FS3ttrFWAYouM54BB5/Tir8cCnzJZZVGANkapjOOpJ7AUzT1juYsYdGY7VA64PfGMmtOC2t3kSytSZGb7xJwOvAPX0p6dAPsD9mC3a30rWlKBFaW3cYHXKvyfevl39ur9hL4l/tS/E3wh8QvAHizSvDUnhbT/s6G9SdpvtK3BnSRDEjABTjGecivs34FxCGz1OMAYU24yDkZCtwPpXvdfE5jLmxMpf1sdVKXuH41H9jr/gpUef+Gm4vzuv/AIxX0D47/Yi8S/HT9lfSvg18evGZ1vx9o1zcX9n4tiV5dl00kpi3o4jZ4vJcRuvHAyDkA1+ilFcbV1YtaO5+H19+w9/wUK8aeFdO+CPjr40aOnw80h7cQXNqsrag8NoVMCkrbxTN5e0FA8+AVGScDH2F+018K/2e/Bf7HyfCX42+IdQsPCdolrYw+I7pZ9QvodTLboruQqsjszTElgRtwSnAxX3/AFxnxA+H3g34p+EdR8C+PtLg1nQ9Vi8q6tJwdrjqCCCGVlIBVlIKkZBzSndxa7jjZNM/CHwD+z58R5/2ebyzm/am0zVPgRa2N9MbLS1Ntc3EMIcm233SLNbo8gw8e8jk4U5r0X/gjr4ItPFP7P8A8UNJ8TWX2jQ/EWpR6dKkg+SeP7M6zKD3wsgz9a96l/4I9/skyaob1JPFEVoX3mwXVE8jGc7dxgMu3t9/PvX6JfDD4W+Avg34NsvAPw20iHRdDsAfKtocnLt953dizu7H7zMSTVpq0r9VYhrVW6M/IjRP2Cf21f2eLzXfDv7KnxZ0q08F+IJ5JGs9XjKz2quNoYBra5Qyqvy+ZGULAAkdMfbH7Hv7I+s/s1+CNbsPFnjK88YeJfERdru5llm+w2wbedlvDI7Y3O5Z3wCx7Dv9v0Uk9LFM/Of9h79i/wAZ/sseLPiD4h8Ua/pmsxeMZ1mt47BZlaDbLJJiTzUUHh8cZqrZfsUeNbX9uyf9rBvEGltocylRpYWb7aM2og+9s8v73P3ulfpFRRBuDTj0FKKknF9T8pf2oP2BfiH4o+Nlt+0v+y94ttfBvjtdrXkd4GWC5mVQglDqkoBaMbZEeNlcY98+N/FD/gmt+0z8dr3QfH3xe+LOl614ysbqIyxtbyQ6ZaWMRD+TbJDCuZGflnKKDjv2/b6ikkkrFOTbuUtNtXstOtbKQhmt4I4mI6EooBI9uKu0UUCCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP/9P9/KKKKACiiigAooooAK8t+JEkSPpwmxtfz1wehyF68GvUq8u+JFwbY2EvUBLgkDqcBDgfX3wKyrJuDS3Jnbl1PNoTAh8q1TCJ8oxhY1xxtX39fT9K5C/Z57htMjtTczYJeRUKxRoDuVcljk9ckY5rpZI/Lt1kuHEaPhVUMWIycctnqc/w96wNRFwq+RBFIVllBkbcoTafc7flUHnkk1vgNHZM8eu7ybZjaPY27LLLdwvIUkJQK23ccY9eRnt0rqLe3htUVFjSPnOEChVLe/8AEx7nH0rzG41iOwmaXd5cROAzEKGVc+vO3PpVnTfENpeBZElDYIclWI5BxySRXp4jDScXUZgoySu9j1dThXO/aq9Sec/j7ntXzX8VPEsKTRaTa3NtLdRIZLmON2HlgngNnpkY44r1/wDtRGTMAkcHLEl9wJ9cHGB6Yr558VXFrpkWq2un6VBLea6xae/kGZFVT0UkcYPfNcmUqcZOUFf+t/1OqTvK/keGza7JLOWbhEfO0HGSPXHJ/OvW/AurajPdbGLnewGQSHC9SAemfc15jYeD59QvFjtzkdC5O7LE8kcD8+wr6u+Gvw4msLdrm5yijbtbBLOR37YFepTxiVOU5mNObd76ns+jwmVULbV2IFYElsMR/ewMkdzXR6dD9lthb
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.