It was shown previously that low-Mg2+-induced epileptiform activity in rat entorhinal cortex slices changes with time from a pattern of serial seizure-like events (SLEs) to a state of continuously recurring epileptiform activity. Valproic acid blocked the early SLEs but not the late activity. It was proposed that the late activity is a model for pharmacoresistant status epilepticus since it was also refractory to phenytoin, carbamazepine, phenobarbital, and midazolam. In the present study, it is demonstrated that phenytoin (50 microM, n=6), phenobarbital (150 microM, n=7), and midazolam (50 microM, n=5) were able to block the early SLEs but not the late activity at the same concentrations. Carbamazepine (50 microM) reduced the duration of the SLEs from 21 +/-5 s to 4+/-3 s (P<0.01), the interictal interval from 123+/-27 s to 27+/-19 s (P<0.01), the SLE-associated rise of [K+]o from 7.7+/-0.5 mM to 5.7+/-0.8 mM (n=4, P<0.05), and the spread of the SLE between entorhinal cortex and neocortex from 4.0+/-0.6 s to 0.8+/-0.1 s (n=4, P<0.05). Lower concentrations of phenytoin (5 and 10 microM, n=5), carbamazepine (10 microM, n =6), and phenobarbital (50 microM, n = 4) had no effect. In conclusion, the hypothesis is supported that low-Mg2+-induced epileptiform activity in rat entorhinal cortex is an in vitro model for the transition from pharmacosensitive to pharmacoresistant status epilepticus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.