Magnetic and magnetostrictive properties of magnetic-annealed polycrystalline CoFe2O4 were investigated. The magnetic hysteresis loops showed obvious uniaxiality with an induced easy direction parallel to the annealing field. Magnetic force microscopy study revealed that the domains were fixed by magnetic annealing. The uniaxial behavior was also observed in the magnetostrictive measurement, which showed a significantly enhanced magnetostriction of − 273 PPM when the external field was applied perpendicular to the annealing field direction. A physical mechanism for the effect of magnetic annealing on polycrystalline CoFe2O4 is developed, in which the induced uniaxiality is ascribed to the realignment of easy axes in polycrystals. The uniaxial behavior of magnetism and enhanced magnetostriction could be well explained by this model.
Surface decarburization of high silicon spring steel in ambient air was studied. The experimental results confirmed the decarburized mechanism under AC1 temperature, in the temperature range of AC1-AC3 and AC3-G. Under AC1 temperature, pearlite spheroidization and surface decarburization are carried out simultaneously and pearlite spheroidization is reinforced. Considering the oxidation loss depth, the “true ferrite decarburized depth” at 850 °C (AC3-G) is still smaller than that at 760°C (AC1-AC3). That is because an “incubation period” must pass away before ferrite decarburization occurs in the temperature range of AC3-G, and the ferrite decarburized rate is limited to being equal to the partial decarburized rate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.