In Medical Diagnosis, Magnetic Resonance Image (MRI) plays a momentous role. MRI is based on the physical and chemical principles of Nuclear Magnetic Resonance (NMR), a technique used to gain information about the nature of molecules. Retrieving a high quality MR Image for a medical diagnosis is critical. So denoising of Magnetic Resonance (MR) images and making them easy for human understanding form is a challenge. This research work presents an efficient Hybrid Abnormal Detection Algorithm (HADA) to detect the abnormalities in any part of the human body by MRIs. The proposed technique includes five stages: Noise Reduction, Smoothing, Feature Extraction, Feature Reduction and Classification. The proposed algorithm has been implemented and Classification accuracy of 98.80% has been achieved. The result shows that the proposed technique is robust and effective compared to other recent works. The system developed using the proposed algorithm will be a good computer aided diagnosis and decision making system in healthcare.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.