A Co-Ni-Ga high-temperature shape memory alloy has been additively manufactured by directed energy deposition. Due to the highly anisotropic microstructure, i.e. columnar grains featuring a strong near-001 texture in build direction, the as-built material is characterized by a very low degree of constraints and, thus, shows excellent superelasticity without conducting a post-process heat treatment. As characterized by in situ deformation testing and post-mortem microstructural analysis, additive manufacturing employing directed energy deposition seems to be highly promising for processing of shape memory alloys, which often suffer difficult workability.
IMPACT STATEMENTThe present work establishes a new pathway towards realization of high performance shape memory alloys by additive manufacturing and, thus, will stimulate further research in this field directed towards application.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.