ABSTRACT:The present work concerns the interplay of the degradation mechanism and the nature of the interaction between microorganisms and substrate. The biodegradation of polycaprolactone films by a pure strain of microorganisms isolated from an industrial composting unit for household refuse was studied in minimal medium with the polymer as sole carbon source. In conditions where the polymer surface is colonized and a biofilm is formed (under a low stirring rate), polymer weight loss is limited, whereas total degradation is observed when stirring conditions prevent biofilm formation. In the first case, holes are observed in the degraded film and a polysaccharide responsible for microorganism adhesion was identified by FTIR. SEM observation of the polymer surface as a function of the degradation time suggests that the crystalline and amorphous phase are degraded at about the same rate in the first case, whereas the amorphous phase is preferentially degraded in the latter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.