Testosterone is primarily produced by Leydig cells of the mammalian male gonads. The cellular functions of Leydig cells are regulated by the hypothalamus-pituitary-gonad axis, whereas the microRNA (miRNA) changes of LH-treated Leydig cells are unknown. Mouse TM3 Leydig cells were treated with LH, and deep sequencing showed that 29 miRNAs were significantly different between two groups (fold change of >1.5 or <0.5, p < .05), of which 27 were upregulated and two were downregulated. The differential expression of miR-29b-3p, miR-378b, miR-193b and miR-3695 was confirmed by quantitative real-time polymerase chain reaction. Bioinformatic analysis revealed that miRNAs regulated a large number of genes with different functions. Pathway analysis indicated that miRNAs were involved in the Wingless and INT-1, adenosine 5'-monophosphate-activated protein kinase, NF-kappa B and Toll-like receptor signalling pathways. Results showed that miRNAs might be involved in the regulation of LH to Leydig cells.
Objective
Paraquat (PQ) is a toxic compound that selectively accumulates in the lungs, inducing severe pulmonary inflammation and fibrosis. However, data on the metabolomic changes induced by the PQ remain scant. This study aimed to determine the metabolic changes in Sprague–Dawley rats subjected to PQ using UPLC-Q-TOF-MS/MS.
Methods
We established groups of PQ-induced pulmonary injury rats for 14 or 28 days.
Results
Our data showed that PQ decreased the survival of the rats and induced pulmonary inflammation at day 14 or pulmonary fibrosis at day 28. There was upregulation of IL-1β expression in the inflammation group as well as upregulation of fibronectin, collagen and α-SMA in the pulmonary fibrosis group. OPLS-DA revealed differential expression of 26 metabotites between the normal and the inflammation groups; 31 plasma metabotites were also differently expressed between the normal and the fibrosis groups. There was high expression of lysoPc160-, hydroxybutyrylcarnitine, stearic acid, and imidazolelactic acid in the pulmonary injury group compared to the normal group.
Conclusion
Metabolomics analysis confirmed that the PQ-induced lung injury was not only related to the aggravation of inflammation and apoptosis but also to mediated histidine, serine, glycerophospholipid, and lipid metabolism. This study gives insights into the mechanisms of PQ-induced lung injury and highlights the potential therapeutic targets.
Nonstructured abstract
The effect of PQ on lung injury in rats was detected by metabonomics, and the possible metabolic mechanism was investigated by KEGG analysis. OPLS-DA revealed the differential expression of 26 metabotites and 31 plasma metabotites between the normal and the pulmonary injury groups. Metabolomics analysis confirmed that the PQ-induced lung injury was not only related to the aggravation of inflammation and apoptosis but also to mediated histidine, serine, glycerophospholipid, and lipid metabolism. Oleoylethanolamine, stearic acid, and imidazolelactic acid are potential molecular markers in PQ-induced pulmonary injury.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.