In this paper, the fluid characteristics of pitching sloshing under microgravity condition are investigated. A numerical method by solving the Navier-Stokes equations to study three-dimensional (3-D) nonlinear liquid sloshing is developed with OpenFOAM, a Computational Fluid Dynamics (CFD) tool. The computational method is validated against existing experimental data in rectangular tank under ordinary gravitational field. However under low gravity conditions, the sloshing liquid shows seemingly chaotic behavior and a considerable volume of liquid attaches on the sidewall due to the effect of surface tension, which is verified in simulation experiment. Besides, the nonlinear liquid behaviors in hemi-spherically bottom tank are firstly studied in this paper. It is found that the wave evolution becomes divergent with the decrease of gravitational acceleration. The natural frequency reaches a constant magnitude quickly with the increase of liquid height and then increases again until the filling level exceeds 70%. Meanwhile, the liquid dynamics of forced pitching sloshing under resonant and off-resonant condition are demonstrated respectively. The numerical techniques for 3-D simulation are hopeful to provide valuable guidance for efficient liquid management in space.
We report the voltage regulation of electrodeposited elliptical magnetostrictive Ni nanodot arrays from single-domain to nonvolatile vortex state at room temperature. On the piezoelectric substrate, isolated elliptical Ni nanodots are fabricated between a pair of square electrodes, with the long axis parallel to the joint line of the electrodes. By applying a voltage to the surface electrodes pair, local stress is generated to induce the magnetization of the nanodots from single-domain to vortex state. The magnetization state of the nanodots is characterized by a magnetic force microscope. Even after the voltage is removed or applying another voltage, the nanodots maintain a stable vortex magnetization state, which shows that the vortex state after regulation is nonvolatile. These results are of great significance for the study of the low-energy-consumption regulation of the nano-dimensional magnetic material and vortex state-based nonvolatile memory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.