Summary
A multilocus GWAS was performed to explore the genetic architecture of four growth traits in yak. In total, 354 female yaks for which measurements of body weight (BW), withers height (WH), body length (BL) and chest girth (CG) at weaning were available underwent genotyping with the Illumina BovineHD BeadChip (770K). After quality control, we retained 98 688 SNPs and 354 animals for GWAS analysis. We identified seven, 18, seven and nine SNPs (corresponding to seven, 17, seven and eight candidate genes) associated with BW, WH, BL and CG at weaning respectively. Interestingly, most of these candidate genes were reported to be involved in growth‐related processes such as muscle formation, lipid deposition, feed efficiency, carcass composition and development of the central and peripheral nervous system. Our results offer novel insight into the molecular architecture underpinning yak growth traits. Further functional analyses are thus warranted to explore the molecular mechanisms whereby these genes affect these traits of interest.
Stripe rust, caused by the pathogenic fungus Puccinia striiformis f. sp. tritici, is an important disease of wheat worldwide. A rapid and reliable detection of the pathogen in latent infected wheat leaves is useful for accurate and early forecast of outbreaks and timely application of fungicides for managing the disease. Using the previously reported primer pair Bt2a/Bt2b, a 362-bp amplicon was obtained from P. striiformis f. sp. tritici and a 486-bp amplicon was obtained from both P. triticina (the leaf rust pathogen) and P. graminis f. sp. tritici (the stem rust pathogen). Based on the sequence of the 362-bp fragment, two pairs of sequence characterized amplified region (SCAR) primers were designed. PSTF117/PSTR363 produced a 274-bp amplicon and TF114/TR323 produced a 180-bp amplicon from P. striiformis f. sp. tritici, whereas they did not produce any amplicon from P. triticina, P. graminis f. sp. tritici, or any other wheat-infecting fungi. The detection limit of PSTF117/PSTR363 was 1 pg/µl and TF114/TR323 was 100 fg/µl. Both SCAR markers could be detected in wheat leaves 9 h post inoculation. An SYBR Green RT-PCR method was also developed to detect P. striiformis f. sp. tritici in infected leaves with the detection limit of 1.0 fg DNA from asymptomatic leaf samples of 6 h after inoculation. These methods should be useful for rapid diagnosis and accurate detection of P. striiformis f. sp. tritici in infected wheat leaves for timely control of the disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.