Harmonia axyridis (Coleoptera: Coccinellidae) has been introduced widely for biological control of agricultural pests. Harmonia axyridis has established in four continents outside of its native range in Asia and it is considered an invasive alien species (IAS). Despite a large body of work on invasion ecology, establishment mechanisms of IAS and their interactions with natural enemies remain open questions. Parasites, defined as multicellular organisms that do not directly kill the host, could potentially play an important role in regulating host populations. This study presents a review of the parasites of H. axyridis, discussing their distributions and effects on host populations across the host's native and invasive range. These parasites are: Hesperomyces virescens Thaxt. fungi, Coccipolipus hippodamiae (McDaniel and Morrill) mites, and Parasitylenchus bifurcatus Poinar and Steenberg nematodes.
After establishment of Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae) in Europe, population densities of native ladybird species have decreased. The post-hibernation onset of female reproduction, a key characteristic influencing population dynamics and competition with related species, was studied. Hibernating individuals were collected and transferred to outdoor cages to continue overwintering. Every two weeks a sample of individuals was transferred to long-day, warm conditions. Intensity of dormancy was studied by determining the pre-oviposition period and ovarian development. Preoviposition periods were short throughout our observations, indicating that Harmonia axyridis was not in diapause but in a quiescent state. H. axyridis becomes active rapidly when temperature rises in spring but is not active earlier in the year than native species. Neither the mode of overwintering, nor the onset of spring activity can explain the invasion success of H. axyridis.
Harmonia axyridis has been introduced as a biological control agent in Europe and the USA. Since its introduction, it has established and spread, and it is now regarded as an invasive alien species. It has been suggested that intraguild predation is especially important for the invasion success of H. axyridis. The aim of this study was to compare the intraguild predation behaviour of three ladybird species (Coccinella septempunctata, Adalia bipunctata, and H. axyridis). Predation behaviour was investigated in semi-field experiments on small lime trees (Tilia platyphyllos). Two fourth-instar larvae placed on a tree rarely made contact during 3-hour observations. When placed together on a single leaf in 23%–43% of the observations at least one contact was made. Of those contacts 0%–27% resulted in an attack. Harmonia axyridis attacked mostly heterospecifics, while A. bipunctata and C. septempunctata attacked heterospecifics as often as conspecifics. In comparison with A. bipunctata and C. septempunctata, H. axyridis was the most successful intraguild predator as it won 86% and 44% of heterospecific battles against A. bipunctata and C. septempunctata respectively, whilst A. bipunctata won none of the heterospecific battles and C. septempunctata won only the heterospecific battles against A. bipunctata. Coccinella septempunctata dropped from a leaf earlier and more often than the other two species but was in some cases able to return to the tree, especially under cloudy conditions. The frequency with which a species dropped did not depend on the species the larva was paired with. The results of these semi-field experiments confirm that H. axyridis is a strong intraguild predator as a consequence of its aggressiveness and good defence against predation from heterospecific species. The fact that H. axyridis is such a strong intraguild predator helps to explain its successful establishment as invasive alien species in Europe and the USA.
The harlequin ladybird, Harmonia axyridis, is an important natural enemy of aphids throughout the world, but is now also considered an invasive alien species. We performed a meta-analysis of published life history data to address the question whether invading populations in Europe and North America have life history parameters that differ from native populations in Asia, explaining the beetle's invasion success in new territories. In this metaanalysis, we accounted for important covariables that are often reported in published studies such as temperature, food source (aphids or eggs of Ephestia kuehniella), strain (laboratory or field populations) and photoperiod. Temperature was a key factor having consistent large effects on development rate, survival and reproductive characteristics of H. axyridis. Food source, strain, and photoperiod had effects on some, but not all characteristics, and their overall effect across characteristics was minor. Individuals of invasive populations had a shorter pre-oviposition period and higher fecundity at low temperatures than those of native populations, and a greater longevity across all temperatures. No differences in survival were found between native and invasive populations, while differences in development rate were not consistent, with opposing results obtained according to the way development rate was measured in trials reported in the literature. Results of this meta-analysis support the hypothesis that the life history of the beetle has changed during its invasion into North America and Europe. Invasive populations had a shorter preoviposition period and higher fecundity at low temperatures, as well as a greater longevity across all temperatures than native populations. These differences may partially explain the invasive success of H. axyridis.Handling Editor: Peter Brown.Electronic supplementary material The online version of this article
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.