Engineered multiwalled carbon nanotubes (MWCNTs) are the subject of intense research and are expected to gain widespread usage in a broad variety of commercial products. However, concerns have been raised regarding potential environmental and human health risks. The mobility of MWCNTs in porous media is examined in this study using one-dimensional flow-through column experiments under conditions representative of subsurface and drinking water treatment systems. Results demonstrate that pore water velocity strongly influenced MWCNT transport, with high MWCNT mobility at pore water velocities greater than 4.0 m/d. A numerical simulator, which incorporated a newly developed theoretical collector efficiency relationship for MWCNTs in spherical porous media, was developed to model observed column results. The model, which incorporated traditional colloid filtration theory in conjunction with a site-blocking term, yielded good agreement with observed results in quartz sand-packed column experiments. Experiments were also conducted in glass bead-packed columns with the same mean grain size as the quartz sand-packed columns. MWCNTs were more mobile in the glass bead-packed columns.
A new method is presented to denoise 1-D experimental signals using wavelet transforms. Although the state-of- the-art wavelet denoising methods perform better than other denoising methods, they are not very effective for experimental signals. Unlike images and other signals, experimental signals in chemical and biophysical applications for example, are less tolerant to signal distortion and under-denoising caused by the standard wavelet denoising methods. The new method 1) provides a method to select the number of decomposition levels to denoise, 2) uses a new formula to calculate noise thresholds that does not require noise estimation, 3) uses separate noise thresholds for positive and negative wavelet coefficients, 4) applies denoising to the Approximation component, and 5) allows the flexibility to adjust the noise thresholds. The new method is applied to continuous wave electron spin resonance (cw-ESR) spectra and it is found that it increases the signal-to-noise ratio (SNR) by more than 32 dB without distorting the signal, whereas standard denoising methods improve the SNR by less than 10 dB and with some distortion. Also, its computation time is more than 6 times faster.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with đź’™ for researchers
Part of the Research Solutions Family.