Objective: This study aims to investigate a hybrid automated treatment planning (HAP) solution that combines knowledge-based planning (KBP) and script-based planning for esophageal cancer. Methods: In order to fully investigate the advantages of HAP, three planning strategies were implemented in the present study: HAP, KBP, and full manual planning. Each method was applied to 20 patients. For HAP and KBP, the objective functions for plan optimization were generated from a dose-volume histogram (DVH) estimation model, which was based on 70 esophageal patients. Script-based automated planning was used for HAP, while the regular IMRT inverse planning method was used for KBP. For full manual planning, clinical standards were applied to create the plans. Paired t-tests were performed to compare the differences in dose-volume indices among the three planning methods. Results: Among the three planning strategies, HAP exhibited the best performance in all dose-volume indices, except for PTV dose homogeneity and lung V5. PTV conformity and spinal cord sparing were significantly improved in HAP (P < 0.001). Compared to KBP, HAP improved all indices, except for lung V5. Furthermore, the OAR sparing and target coverage between HAP and full manual planning were similar. Moreover, HAP had the shortest average planning time (57 min), when compared to KBP (63 min) and full manual planning (118 min). Conclusion: HAP is an effective planning strategy for obtaining a high quality treatment plan for esophageal cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.