In the present work, the role of chemical compounds of one abundant vegetable waste, exhausted coffee, on Cr(VI), Cu(II), and Ni(II) sorption has been investigated. For this purpose, exhausted coffee was subjected to sequential extractions by using dichloromethane (DCM), ethanol (EtOH), water, and NaOH 1 %. The raw and treated biomass resulting from the extractions were used for metal ions sorption. Sorption results were discussed taking into consideration polarity and functional groups of raw and treated biomass. In general, the successive removal of extractives led to an insignificant increase in the studied metal ions sorption after DCM, EtOH, and water. The sorption results using free-extractive materials showed that metal sorption can be effectively achieved without this non-structural fraction of the sorbent. Alkaline hydrolysis destroyed in part the structural compounds of the sorbent resulting in an insignificant decrease of chromium removal while a significant increase of copper and nickel sorption was observed. The determination of elemental ratios of exhausted coffee and all treated biomass evidenced the involvement of oxygen functional groups in copper and nickel sorption. FTIR analysis confirmed the involvement of lignin moieties in the chromium sorption by exhausted coffee. As a final remark, this study shows that the sequential extraction opens new expectations to the total valorisation of lignocellulosic-based biomasses. The extractives can be removed and used as a biosource of valuable compounds, and the resulting waste can be used as a sorbent for metal ions keeping the same capacity for metal sorption as the non-extracted biomassThis research was funded by the Spanish Ministry of Science and Innovation as part of the projects CTM2010-15185 and CTM2012-37215-C02-01. The authors were financially supported by a fellowship from Chinese Scholarship Council [2011] 3005 and by the Spanish Ministry of Education, Culture and Sport (MHE2011-00258
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.