The photoprotein aequorin has been widely used as a bioluminescent label in immunoassays, for the determination of calcium concentrations in vivo, and as a reporter in cellular imaging. It is composed of apoaequorin (189 amino acid residues), the imidazopyrazine chromophore coelenterazine and molecular oxygen. The emission characteristics of aequorin can be changed by rational design of the protein to introduce mutations in its structure, as well as by substituting different coelenterazine analogues to yield semi-synthetic aequorins. Variants of aequorin were created by mutating residues His16, Met19, Tyr82, Trp86, Trp108, Phe113 and Tyr132. Forty-two aequorin mutants were prepared and combined with 10 different coelenterazine analogues in a search for proteins with different emission wavelengths, altered decay kinetics and improved stability. This spectral tuning strategy resulted in semi-synthetic photoprotein mutants with significantly altered bioluminescent properties.
Aequorin and obelin are photoproteins whose calcium controlled bioluminescent light emission is used for labeling in assays, for the determination of calcium concentrations in vivo, and as a reporter in cellular imaging. Both of these photoproteins emit blue light from a 2-hydroperoxycoelenterazine chromophore, which is non-covalently bound in the hydrophobic core of the proteins. In an effort to produce aequorin and obelin variants with improved analytical properties, such as alternative emission colors and altered decay kinetics, seven mutants of aequorin and obelin were prepared and combined with 10 different coelenterazine analogs. These semi-synthetic photoprotein mutants exhibited shifts in bioluminescent properties when compared with wild-type proteins. The bioluminescent parameters determined for these semi-synthetic photoprotein mutants included specific activity, emission spectra and decay half-life time. This spectral tuning strategy resulted in semi-synthetic photoprotein mutants that had significantly altered bioluminescent properties. The largest emission maxima shift obtained was 44 nm, and the largest decay half-life difference was 23.91 s.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.